A New Low Power Low Cost Ozone Sterilizer for Medical Equipment

用于医疗设备的新型低功率低成本臭氧灭菌器

基本信息

  • 批准号:
    8411110
  • 负责人:
  • 金额:
    $ 12.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-17 至 2014-03-16
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In this Phase I SBIR, KWJ Engineering Inc. proposes to combine our years of experience with ozone generation and sensing technology with the NIH SBIR program to develop novel technology for the sterilization of medical instruments and sharps. The proposed technology is significant since the instrument will serve as a miniature, low power and low cost platform capable of decontamination of viral pathogens such as HIV, Hepatitis B and Hepatitis C (HBV, HCV). The technology will be closely aligned with the NCHHSTP vision of "Development of appropriate and affordable technologies that may contribute to solving the problems of unsafe injection and unsafe sharps disposal". In particular, the sterilizer instrument will serve to fulfill NCHHSTP objectives related to "...Examples of such technologies -- not to the exclusion of others, which may be materials, methods, techniques, instruments, or devices - include: a) plastic needles to replace steel ones to simplify sharps disposal; b) noncorrosive sterilants without the disadvantages of bleach, or other equipment for effective sterilization of reusable medical instruments". The sterilizer will incorporate a KWJ designed MEMS (Micro-Electromechanical Systems) based micro-plasma generator for the production of ozone in a compact and low-power design. The proposed design will incorporate a sterilization chamber with ozone sensors (KWJ designed) and process controller to monitor cycle time and ozone concentration prior to ambient exposure after the sterilization cycle. The proposed device will be a marked improvement over technologies that are commercially available due to the ease of ozone generation from atmospheric air and its subsequent degradation to oxygen with no generation of residual by- products or hazardous species. Medical sterilizers available on the market today are primarily steam-based, with ethylene oxide and hydrogen peroxide plasma as other alternatives. Steam-based autoclaves, while effective, are energy intensive, while ethylene oxide is a toxic gas and can leave behind residuals. These sterilization methods, while adaptable for hospitals, cannot be used as portable sterilization solutions for field operations. In addition, other chemical alternatives require replenishing of reagents and regular maintenance. The proposed device will be portable, light-weight, with relatively low power consumption and low cost, requiring virtually no maintenance and will be deployable for mobile applications such as disaster relief and military combat scenarios where rapid and on-site sterilization is required for field surgical procedures. The simplicity and versatility of the system also provide a means to implement safe sharps-related recycling and disposal protocols using ozone as the primary disinfectant, thereby addressing a critical area of concern regarding transmission of diseases through percutaneous sharps injuries as related to public health and safety. PUBLIC HEALTH RELEVANCE: The proposed ozone sterilizer can provide an efficient and effective means to decontaminate medical instruments and sharps with the use of ozone, a highly reactive and broad-spectrum disinfectant. The use of micro-plasma technology to create ozone leads to a compact, low-cost and portable device that can fulfill the need for an effective and versatile methodology for sterilizing re-usable medical instruments as well as for sharps disposal. The resulting device will greatly increase safety and reduce risk when working in environments that pose danger of exposure to HIV/AIDS, Hepatitis and other infectious diseases, and can serve as a crucial tool for medical practitioners in situations where access to regular medical care is limited, while being easily adaptable for medical waste and recycling systems, with the capability of rapidly neutralizing myriad viral, microbicidal and sporicidal agents, with a low resource footprint.
描述(由申请人提供):在第一阶段 SBIR 中,KWJ Engineering Inc. 提议将我们在臭氧发生和传感技术方面多年的经验与 NIH SBIR 计划相结合,开发用于医疗器械和锐器灭菌的新技术。拟议的技术意义重大,因为该仪器将作为一个微型、低功耗和低成本的平台,能够净化艾滋病毒、乙型肝炎和丙型肝炎(HBV、HCV)等病毒病原体。该技术将与 NCHHSTP 的愿景紧密结合,即“开发适当且负担得起的技术,有助于解决不安全注射和不安全锐器处置问题”。特别是,灭菌器仪器将有助于实现与“......此类技术的示例(不排除其他技术,可能是材料、方法、技术、仪器或设备)相关的 NCHHSTP 目标,包括:a) 塑料取代钢针以简化锐器处理;b) 没有漂白剂缺点的无腐蚀性消毒剂,或其他可重复使用医疗器械的有效消毒设备”。该灭菌器将采用 KWJ 设计的基于 MEMS(微机电系统)的微等离子体发生器,用于在紧凑和低功耗的设计中产生臭氧。拟议的设计将采用带有臭氧传感器(KWJ 设计)的灭菌室和过程控制器,以在灭菌周期后监测循环时间和环境暴露之前的臭氧浓度。由于很容易从大气中产生臭氧并随后降解为氧气,并且不产生残留副产品或有害物质,因此所提出的装置将是对商业上可获得的技术的显着改进。目前市场上的医用灭菌器主要是蒸汽灭菌器,也有环氧乙烷和过氧化氢等离子体作为其他替代品。蒸汽高压釜虽然有效,但能源密集型,而环氧乙烷是一种有毒气体,会留下残留物。这些灭菌方法虽然适用于医院,但不能用作现场操作的便携式灭菌解决方案。此外,其他化学替代品需要补充试剂和定期维护。所提出的设备将是便携式的、重量轻的、功耗相对较低、成本较低、几乎不需要维护,并且可部署用于需要快速现场消毒的移动应用,例如救灾和军事作战场景。外科手术。该系统的简单性和多功能性还提供了一种使用臭氧作为主要消毒剂来实施与锐器相关的安全回收和处置协议的方法,从而解决了与公共健康和安全相关的经皮锐器伤害传播疾病的关键领域。 公共健康相关性:拟议的臭氧灭菌器可以提供一种高效且有效的方法,通过使用臭氧(一种高反应性和广谱消毒剂)来净化医疗器械和锐器。使用微等离子体技术产生臭氧可产生紧凑、低成本和便携式设备,可以满足对可重复使用的医疗器械进行消毒以及锐器处理的有效且通用的方法的需求。由此产生的设备将大大提高安全性并降低在有暴露于艾滋病毒/艾滋病、肝炎和其他传染病危险的环境中工作时的风险,并且可以作为医生在获得常规医疗护理机会有限的情况下的重要工具,同时易于适应医疗废物和回收系统,能够快速中和多种病毒、杀微生物和杀芽孢剂,且资源足迹低。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph R. Stetter其他文献

Joseph R. Stetter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph R. Stetter', 18)}}的其他基金

Development of i-AIDE - a Miniature Wearable Personal Monitor for the Elderly
开发i-AIDE - 一款适合老年人的微型可穿戴个人监视器
  • 批准号:
    8059536
  • 财政年份:
    2011
  • 资助金额:
    $ 12.98万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optimizing CD8+ T Cell Vaccine Responses Against HIV
优化 CD8 T 细胞疫苗对 HIV 的反应
  • 批准号:
    8492547
  • 财政年份:
    2013
  • 资助金额:
    $ 12.98万
  • 项目类别:
Targeting mTOR to Enhance Immunogenicity and Efficacy of HIV Vaccines
靶向 mTOR 增强 HIV 疫苗的免疫原性和功效
  • 批准号:
    7904448
  • 财政年份:
    2010
  • 资助金额:
    $ 12.98万
  • 项目类别:
Antigen-specific CD8+ T cells and protective immunity to tuberculosis
抗原特异性 CD8 T 细胞和结核病保护性免疫
  • 批准号:
    7321674
  • 财政年份:
    2005
  • 资助金额:
    $ 12.98万
  • 项目类别:
Antigen-specific CD8+ T cells and protective immunity to tuberculosis
抗原特异性 CD8 T 细胞和结核病保护性免疫
  • 批准号:
    7535572
  • 财政年份:
    2005
  • 资助金额:
    $ 12.98万
  • 项目类别:
Antigen-specific CD8+ T cells and protective immunity to tuberculosis
抗原特异性 CD8 T 细胞和结核病保护性免疫
  • 批准号:
    7737886
  • 财政年份:
    2005
  • 资助金额:
    $ 12.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了