The Anti-Autophagy Arsenal of Legionella pneumophila
嗜肺军团菌的抗自噬阿森纳
基本信息
- 批准号:10679185
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ADP ribosylationAGFG1 geneAddressAutophagocytosisBacteriaBacterial TranslocationBiogenesisBiological ProcessBiotinylationCellsCommunicable DiseasesComplexCritical ThinkingCytoplasmDataDefectDegradation PathwayDevelopmentDiseaseEndosomesFamilyGenetic EpistasisGrantGrowthImmuneImmunofluorescence ImmunologicImmunoprecipitationInfectionInstitutionInvadedKnowledgeLaboratoriesLegionellaLegionella pneumophilaLibrariesLysosomesMammalian CellMass Spectrum AnalysisMembraneMentorsMono(ADP-Ribose) TransferasesN-terminalNatureNerve DegenerationOrganellesPathogenesisPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalPlasmidsPlayProcessProtein FamilyProteinsProteomicsReagentRegulationReporterResearchRoleScientistShapesSideSignal TransductionStudentsTechnical ExpertiseTestingTrainingVacuoleVirulenceVisualizationWorkYeastscollaborative environmentcombinatorialdesignfluorescence microscopehuman diseaseinhibition of autophagyinhibitormicrobialmutantnovelpathogenpathogenic bacteriapreventprotein aggregationprotein degradationprotein functionreceptorrecruitsealskillstrafficking
项目摘要
PROJECT SUMMARY
Autophagy is a highly conserved, primarily degradative pathway defined by the growth of a cup-shaped
membrane that envelopes and delivers cytosolic cargo (such as bacteria) to the lysosome for degradation.
Legionella pneumophila is a species of facultative intracellular bacteria that secretes over 300 effector proteins
that subvert host pathways such as the degradative endosomal and autophagy pathways to promote
intracellular survival. Legionella lacking currently known autophagy-inhibiting effectors are still capable of
evading this pathway, indicating that there are additional, undiscovered autophagy-inhibiting effectors. Taking
advantage of the highly conserved nature of this pathway, a recent screen identified several Legionella
effectors that blocked autophagy in yeast. One of those effectors, Lem26, was confirmed to inhibit autophagy
in mammalian cells. With the central hypothesis that Lem26 inhibits autophagy to prevent the capture
and lysosomal degradation of Legionella, the proposed research is designed to identify the mechanism by
which Lem26 inhibits autophagy (Aim 1) and determine its physiological relevance in the context of infection
(Aim 2). To discover the mechanism by which Lem26 inhibits autophagy, Aim 1 utilizes both an unbiased mass
spectrometry-based approach to identify the host targets of Lem26 as well as targeted experimentation on
putative targets based on epistasis data identifying the autophagic step inhibited by Lem26. To determine the
physiological relevance of Lem26 in the context of infection, Aim 2 utilizes multiple approaches to identify the
localization and interactome of bacterially translocated Lem26 as well as assess the impact of Lem26 on the
progression of autophagy and the intracellular growth of Legionella. The research and training plans laid out in
this proposal will be executed in a highly collaborative environment that is suited for the development of the
critical thinking skills and technical expertise required for a future research group leader. Given the broad
implication of autophagy in various diseases and the common virulence strategies employed by intracellular
pathogens, this proposed work will have broad implications in human disease.
项目概要
自噬是一种高度保守的、主要是降解的途径,由杯状细胞的生长所定义
包裹胞质货物(例如细菌)并将其输送至溶酶体进行降解的膜。
嗜肺军团菌是一种兼性胞内细菌,可分泌 300 多种效应蛋白
颠覆宿主途径,例如降解内体和自噬途径,以促进
细胞内存活。缺乏目前已知的自噬抑制效应器的军团菌仍然能够
逃避这个途径,表明还有其他未被发现的自噬抑制效应器。服用
利用该途径的高度保守性,最近的一项筛选鉴定出了几种军团菌
阻止酵母自噬的效应器。其中一种效应子 Lem26 被证实可以抑制自噬
在哺乳动物细胞中。中心假设是 Lem26 抑制自噬以防止捕获
和军团菌的溶酶体降解,拟议的研究旨在通过以下方式确定其机制:
Lem26 抑制自噬(目标 1)并确定其在感染情况下的生理相关性
(目标 2)。为了发现 Lem26 抑制自噬的机制,Aim 1 利用了无偏质量
基于光谱测定的方法来识别 Lem26 的宿主靶标以及针对
基于确定 Lem26 抑制的自噬步骤的上位数据的推定目标。确定
Lem26 在感染情况下的生理相关性,目标 2 利用多种方法来识别
细菌易位 Lem26 的定位和相互作用组,并评估 Lem26 对细菌易位的影响
自噬的进展和军团菌的细胞内生长。中列出的研究和培训计划
该提案将在适合开发的高度协作环境中执行
未来研究小组领导者所需的批判性思维技能和技术专长。鉴于广泛
自噬在各种疾病中的意义以及细胞内自噬所采用的常见毒力策略
病原体,这项拟议的工作将对人类疾病产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Reyes Parducho其他文献
Kevin Reyes Parducho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hepatotoxic mechanisms of anti-HIV- and anti-COVID-19 drugs and substance use disorders
抗 HIV 和抗 COVID-19 药物和物质使用障碍的肝毒性机制
- 批准号:
10684434 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Dysregulation of iron homeostasis by mutant LRRK2 in human neurons
人类神经元中突变型 LRRK2 导致铁稳态失调
- 批准号:
10592478 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Neurodevelopmental Function of TBC1D7: A Core Component of the TSC Complex
TBC1D7 的神经发育功能:TSC 复合体的核心组成部分
- 批准号:
10590134 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
The Role of DENND5B in Dietary Lipid Absorption
DENND5B 在膳食脂质吸收中的作用
- 批准号:
10661074 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别: