Defining the role of ligand spatial organization in T cell signaling with DNA origami
用 DNA 折纸定义配体空间组织在 T 细胞信号传导中的作用
基本信息
- 批准号:10680089
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptive Cell TransfersAffectAntibodiesAntigen PresentationAntigen-Presenting CellsAutoimmune DiseasesBindingBiochemistryBiological ProcessCell Signaling ProcessCell TherapyCell modelCell surfaceCellsCellular biologyCuesDNADependenceDevelopmentDiabetes MellitusDiseaseEngineeringExclusionFoundationsGoalsHeightHumanImmune signalingImmunotherapyInterleukin-2KnowledgeLateralLearningLigandsLinker DNALupusMalignant NeoplasmsMediatingMethodsNanotechnologyNucleotidesPathway interactionsPatientsPatternPeptide/MHC ComplexPhosphotransferasesPositioning AttributeProcessProductionPublic HealthReagentResearchResolutionResourcesRoleSignal PathwaySignal TransductionSignaling MoleculeSingle-Stranded DNAStructureSurfaceT cell regulationT cell therapyT-Cell ActivationT-Cell ProliferationT-Cell ReceptorT-LymphocyteTechniquesTherapeuticWorkcancer immunotherapycancer therapycell behaviordesignelectron beam lithographyengineered T cellsextracellularfeasibility testingimmunological synapseimmunological synapse formationinnovationinsightinterestlight microscopymanufacturemigrationnanometer resolutionnanopatternnanoscalenovelprogrammed cell death protein 1receptorscaffoldstoichiometrysuccesstool
项目摘要
Project Summary
Understanding and manipulating cell signaling processes is crucial for adoptive cell therapies (ACT), which
show significant promise in treating diseases such as cancer and diabetes. Many of the current challenges in
manufacturing these therapeutics are related to our lack of control over ex vivo T cell activation. Though
tremendous progress has been made in understanding how extracellular signaling cues influence intracellular
states, our understanding of detailed mechanisms governing these processes is incomplete. Mounting evidence
suggests that cell signaling is regulated by the physical arrangement of signaling structures at the surface of
cells. However, determining how the spatial arrangement of signaling structures guides cell behavior is very
difficult due to the nanoscale size of these structures, which is below the resolution limit of traditional light
microscopy.
This study will provide crucial information towards elucidating the role of spatial organization in T cell regulation,
as well as test the feasibility of novel tools I have designed to study and manipulate structures on the nanoscale.
The objective of this study is to determine how 3D spatial arrangements of signaling molecules affect T cell
behavior. To do this, I will arrange ligands into nanoscale 3D patterns, then present these patterned ligands to
T cells and characterize signaling dynamics, as well as T cell manufacturing parameters such as T cell
proliferation rate and IL-2 secretion. The rationale for this work is that by defining the relationship between ligand
arrangement and T cell signaling, we will better understand how the organization of signaling molecules at the
cell surface regulates intracellular pathways, which will guide the development of optimized reagents for efficient
ex vivo T cell activation. I will accomplish this goal using an integrated approach drawing from nanotechnology,
biochemistry, and cell biology. This project will conduct three Specific Aims: 1) determine the relationship
between extracellular receptor kinase dynamics and 3D stimulatory ligand arrangement, 2) determine the spatial
dependence of inhibitory receptors on T cell activation, and 3) create patterned T cell signaling reagents that
can trigger ex vivo primary T cell activation. My project is highly innovative because it will use DNA origami as a
method to pattern ligands with single nanometer-resolution, a degree of precision rivaled only by advanced
cleanroom techniques such as electron beam lithography. This project’s significance lies in defining the
relationship between the spatial organization of signaling molecules and intracellular pathways, and in
establishing the foundation for nanopatterned immunotherapy reagents. This knowledge will allow us to more
deeply understand the mechanisms underlying T cell activation and differentiation, enabling efficient and
efficacious manufacturing of cell therapies for cancer, diabetes, and other diseases.
项目概要
了解和操纵细胞信号传导过程对于过继细胞疗法 (ACT) 至关重要,该疗法
在治疗癌症和糖尿病等疾病方面显示出巨大的前景。
制造这些疗法与我们缺乏对离体 T 细胞激活的控制有关。
在理解细胞外信号传导如何影响细胞内信号方面取得了巨大进展
表明,我们对控制这些过程的详细机制的理解并不完整。
表明细胞信号传导受到细胞表面信号传导结构的物理排列的调节
然而,确定信号结构的空间排列如何指导细胞行为是非常重要的。
由于这些结构的纳米级尺寸,低于传统光的分辨率极限,因此很困难
显微镜。
这项研究将为阐明空间组织在 T 细胞调节中的作用提供重要信息,
以及测试我设计的用于研究和操纵纳米尺度结构的新工具的可行性。
本研究的目的是确定信号分子的 3D 空间排列如何影响 T 细胞
为此,我会将配体排列成纳米级 3D 图案,然后将这些图案化的配体呈现给
T 细胞和表征信号动力学,以及 T 细胞制造参数,例如 T 细胞
这项工作的基本原理是通过定义配体之间的关系。
排列和 T 细胞信号传导,我们将更好地了解信号分子在
细胞表面调节细胞内途径,这将指导优化试剂的开发,以实现高效
我将使用纳米技术的综合方法来实现这一目标,
该项目将进行三个具体目标:1)确定关系。
细胞外受体激酶动力学和 3D 刺激配体排列之间,2) 确定空间
抑制性受体对 T 细胞激活的依赖性,以及 3) 创建图案化 T 细胞信号转导试剂
可以触发体外初级 T 细胞激活 我的项目具有高度创新性,因为它将使用 DNA 折纸作为
方法以单纳米分辨率对配体进行图案化,其精确度只有先进的技术才能匹敌
该项目的意义在于定义了洁净室技术,例如电子束光刻。
信号分子的空间组织与细胞内通路之间的关系,以及
这些知识将为纳米图案免疫治疗试剂奠定基础。
深入了解T细胞激活和分化的机制,实现高效、
高效生产癌症、糖尿病和其他疾病的细胞疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konlin Shen其他文献
Konlin Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Neural organoid models of the immunological microenvironment of glioblastoma for drug discovery applications
用于药物发现应用的胶质母细胞瘤免疫微环境的神经类器官模型
- 批准号:
10761235 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Probing mesoscale receptor organization in T cell signaling with DNA origami
用 DNA 折纸探测 T 细胞信号传导中的中尺度受体组织
- 批准号:
10726455 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Deciphering the role of p16INK4A+ fibroblasts in lung fibrosis
解读 p16INK4A 成纤维细胞在肺纤维化中的作用
- 批准号:
10559515 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Deciphering the role of p16INK4A+ fibroblasts in lung fibrosis
解读 p16INK4A 成纤维细胞在肺纤维化中的作用
- 批准号:
10340480 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
T cell invasion of the stem cell compartment during immune-mediated GI damage
免疫介导的胃肠道损伤过程中 T 细胞入侵干细胞区室
- 批准号:
10542401 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别: