Defining the role of perineuronal nets in Alzheimer's Disease pathology

定义神经周围网在阿尔茨海默病病理学中的作用

基本信息

项目摘要

Project Summary Alzheimer’s Disease (AD) is the most common cause of dementia in elderly populations. The development of effective treatments for this progressive neurodegenerative disorder has been hindered by our lack of understanding of the disease. AD is classically characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, and brain-wide neuroinflammation which ultimately result in synaptic loss, neuronal dysfunction, and cognitive impairments. With our incomplete knowledge of the mechanisms underlying the emergence of these pathological hallmarks, we must focus on understanding the different aspects of disease pathology to successfully create therapies treating AD. Genome wide association studies (GWAS) have implicated microglia, the tissue-resident macrophages of the brain, as mediators of disease pathogenesis. Microglia actively maintain tissue homeostasis in the healthy brain including the regulation of lattice-like extracellular matrix (ECM) structures called perineuronal nets (PNNs). PNNs enwrap the soma and proximal synapses of different neuronal subsets and aid in learning/memory consolidation. While PNNs are naturally lost with age in wild-type (WT) mice, this loss is exacerbated in AD. Interestingly, when microglia are eliminated in the AD transgenic 5xFAD mouse model, 1) plaques fail to form and 2) PNN loss is prevented, altogether suggesting PNNs play a protective role. However, the consequences of PNN loss in AD remain unknown. To that end, we have developed two approaches to ablate PNN structures both before and after the onset of plaque deposition in order to determine their role in plaque formation, synaptic loss, and neuronal loss. In this proposal, I will determine the impact of PNNs in AD pathology by pursuing two important questions: 1) does the loss of these ECM structures facilitate plaque formation and 2) does PNN loss make neurons more susceptible to damage? Collectively, this proposal will elucidate the role of PNNs in AD – before and after the onset of plaque pathology – by exploring how their experimental ablation will affect plaque deposition, synaptic loss, and neuronal loss. Establishing whether PNNs can prevent plaque deposition as well as determining whether PNN loss in AD renders neurons more susceptible to damage is highly relevant and could lead to new therapeutic avenues that target genes/ proteins involved in PNN synthesis and degradation.
项目概要 阿尔茨海默病(AD)是老年人痴呆症的最常见原因。 由于我们缺乏治疗方法,这种进行性神经退行性疾病的有效治疗受到阻碍 AD 的典型特征是淀粉样蛋白-β (Aβ) 斑块、神经原纤维缠结、 和全脑神经炎症,最终导致突触丧失、神经元功能障碍和认知障碍 由于我们对这些病理现象出现的机制还不完全了解。 标志,我们必须重点了解疾病病理学的不同方面才能成功创造 治疗 AD 的疗法涉及小胶质细胞(组织驻留体)。 大脑巨噬细胞作为疾病发病机制的介质,积极维持组织稳态。 在健康大脑中,包括对称为“格子状细胞外基质”(ECM)结构的调节 神经周围网 (PNN) 包裹不同神经元亚群的胞体和近端突触并提供帮助。 虽然野生型 (WT) 小鼠的 PNN 会随着年龄的增长而自然丧失,但这种丧失是 当 AD 转基因 5xFAD 小鼠模型中的小胶质细胞被消除时,AD 中的症状会加剧,1) 斑块无法形成,并且 2) PNN 损失被阻止,这表明 PNN 发挥了保护作用。 AD 中 PNN 丢失的后果仍然未知。为此,我们开发了两种方法。 在斑块沉积开始之前和之后消融 PNN 结构,以确定它们在斑块沉积中的作用 在本提案中,我将确定 PNN 在 AD 中的影响。 通过追寻两个重要问题来进行病理学研究:1)这些 ECM 结构的丧失是否会促进斑块的形成 2)PNN 损失是否会使神经元更容易受到损伤? 通过探索 PNN 在斑块病理发生之前和之后如何作用,阐明 PNN 在 AD 中的作用 实验性消融会影响斑块沉积、突触损失和神经损失。 可以防止斑块沉积,并确定 AD 中 PNN 缺失是否会使神经元更容易受到影响 与损伤高度相关,并可能导致针对参与损伤的基因/蛋白质的新治疗途径 PNN 合成和降解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rocio Alejandra Barahona其他文献

Rocio Alejandra Barahona的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
食欲素2型受体通过影响BACE2功能增加脑内Aβ产生加速阿尔茨海默病发生发展的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
PRAS40通过促进G6PI/PGK1/LDHA复合物的组装加速糖酵解进程对结直肠癌发生的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
流相互作用区对太阳高能粒子加速和传输过程的影响
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
下游边界对磁重联出流区电子加速的影响
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
  • 批准号:
    10528062
  • 财政年份:
    2023
  • 资助金额:
    $ 4.32万
  • 项目类别:
Evaluation of peripheral nerve stimulation as an alternative to radiofrequency ablation for facet joint pain
周围神经刺激替代射频消融治疗小关节疼痛的评估
  • 批准号:
    10734693
  • 财政年份:
    2023
  • 资助金额:
    $ 4.32万
  • 项目类别:
The role of USP27X-Cyclin D1 axis in HER2 Therapy Resistant Breast Cancer
USP27X-Cyclin D1 轴在 HER2 治疗耐药乳腺癌中的作用
  • 批准号:
    10658373
  • 财政年份:
    2023
  • 资助金额:
    $ 4.32万
  • 项目类别:
Exploring brain perivascular fibroblasts in health and cerebral amyloid angiopathy
探索大脑血管周围成纤维细胞在健康和脑淀粉样血管病中的作用
  • 批准号:
    10739076
  • 财政年份:
    2023
  • 资助金额:
    $ 4.32万
  • 项目类别:
DNA–Protein Cross-Linking Sequencing for Genome-Wide Mapping of Abasic Sites at Single-Nucleotide Resolution
DNA-蛋白质交联测序,以单核苷酸分辨率进行全基因组脱碱基位点作图
  • 批准号:
    10723069
  • 财政年份:
    2023
  • 资助金额:
    $ 4.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了