Predictive Smoking Cessation Preclinical Battery

预测性戒烟临床前电池

基本信息

  • 批准号:
    8455421
  • 负责人:
  • 金额:
    $ 82.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite great advances in both the understanding of the neurobiology of addiction and the development and approval of smoking cessation therapies, a significant need remains for better smoking cessation aids. Our goal is aligned with NIDA's intent to bring the power of science to bear on drug abuse and addiction. We propose to use tools from a broad range of disciplines, and promise rapid and effective dissemination and use of the results of the proposed research to significantly improve treatment of nicotine abuse and addiction. The platform we propose to use will help identify, evaluate, and develop innovative medications to treat nicotine abuse and addiction. We propose to implement a research program through collaborations with academia, industry and government. Although there are two first-line (varenicline and bupropion) and two second-line (clonidine and notriptyline) approved medications for smoking cessation that significantly help to stop smoking, about 80% of smokers are unable to remain abstinent. As an explanation for such low success rate, it has been hypothesized that addiction develops in the presence of predisposing cognitive and affective states, which are unaffected by existing therapeutics but could be targeted by new smoking cessation aids for improved efficacy. One of the main reasons for the slow development of novel medications with improved efficacy is the lack of clearly translatable preclinical models of nicotine dependence that exhibit high degrees of predictive validity. Most preclinical tests are simply based on blocking nicotine-like effects but ignore other predisposing or underlying factors, either cognitive or emotional, that may trigger and maintain nicotine abuse. The availability of both approved medications and failed compounds gives us the opportunity to create a battery of nicotine dependence and CNS efficacy tests with enhanced predictive validity, potentially a key tool in enhancing future discovery and development efforts. During Phase I we will develop a test battery based on 1) consideration of multiple aspects underlying abuse (rewarding effects of acute and chronic nicotine, alleviation of withdrawal, relapse, anxiety, depression, cognitive dysfunction and impulsivity), 2) definition of a smoking cessation predictive score through a machine learning algorithm trained on a behavioral dataset generated with both effective and ineffective medications in our test battery and 3) minimization of animal and throughput costs. During Phase II the platform will grow to comprise a database of compounds and mechanisms of action of postulated smoking cessation potential, prioritized by their smoking cessation scores and predicted superiority in combating emotional and cognitive aspects of nicotine dependence. Finally, this platform (battery, database and computational tools) will be offered during Phase III as drug screening method to the members of a private public partnership, created to maintain, support, further develop and publicize the platform. The novelty of this project resides in the combination of economic principles and bioinformatics methods to take advantage of existing smoking cessation FDA-approved gold standards, the inclusion of cognitive and emotional state-relevant testing in the proposed preclinical battery, the creation of a knowledge database, and the management of the final platform by a private-public consortium to ensure maximal quality, value and access. We expect that the knowledge and tools generate by this project will stimulate further research and drug development both for smoking cessation and across other areas of drug abuse and discovery. PUBLIC HEALTH RELEVANCE: Predictive Smoking Cessation Preclinical Battery Despite great advances in both the understanding of the neurobiology of addiction and the development and approval of smoking cessation therapies, a significant need remains for better smoking cessation aids. Our goal is aligned with NIDA's intent to bring the power of science to bear on drug abuse and addiction. We propose to use tools from a broad range of disciplines, and promise rapid and effective dissemination and use of the results of the proposed research to significantly improve treatment of nicotine abuse and addiction. The platform we propose to use will help identify, evaluate, and develop innovative medications to treat nicotine abuse and addiction. We propose to implement a research program through collaborations with academia, industry and government. The existence of several medications for smoking cessation create a major opportunity for the creation of improved research tools for the discovery and development of novel, and more effective, smoking cessation medications. We propose to compare effective smoking cessation medications against ineffective medications in a comprehensive preclinical test battery to capture those features that best separate the two drug sets. We will use novel statistical and computational tools to determine which subset of faster and cheaper tests is necessary to distinguish these two classes to create an optimized predictive test battery. We will then characterize a series of compounds that are thought to be promising candidates for future anti- smoking medications using the novel screening battery. Using bioinformatics methods we will compare these promising compounds against the set of efficacious FDA-approved compounds and assign them a predictive score that represents the likelihood that such compounds will be effective in the clinic. We will further prioritize compounds that show additional positive features such as pro-cognitive or anxiolytic effects. If successful, this projet will have a dramatic impact on the cost and efficiency of the discovery and development of novel smoking cessation medications, ultimately saving millions of lives and millions of dollars in lost economic output and healthcare costs.
描述(由申请人提供):尽管在成瘾神经生物学的理解以及戒烟疗法的开发和批准方面都取得了巨大进步,但仍然非常需要更好的戒烟辅助工具。我们的目标与 NIDA 的意图一致,即利用科学的力量来解决药物滥用和成瘾问题。我们建议使用广泛学科的工具,并承诺快速有效地传播和使用拟议研究的结果,以显着改善尼古丁滥用和成瘾的治疗。我们建议使用的平台将有助于识别、评估和开发治疗尼古丁滥用和成瘾的创新药物。我们建议通过与学术界、工业界和政府合作实施一项研究计划。尽管有两种一线(伐尼克兰和安非他酮)和两种二线(可乐定和诺替林)批准的戒烟药物可显着帮助戒烟,但约 80% 的吸烟者无法保持戒烟。作为成功率如此低的解释,有人假设成瘾是在易感认知和情感状态存在的情况下形成的,这些状态不受现有疗法的影响,但可以通过新的戒烟辅助手段来提高疗效。疗效提高的新型药物开发缓慢的主要原因之一是缺乏具有高度预测有效性的明确可转化的尼古丁依赖临床前模型。大多数临床前测试只是基于阻断尼古丁样作用,但忽略了可能引发和维持尼古丁滥用的其他诱发因素或潜在因素,无论是认知因素还是情感因素。已批准药物和失败化合物的可用性使我们有机会创建一系列具有增强预测有效性的尼古丁依赖和中枢神经系统功效测试,这可能是加强未来发现和开发工作的关键工具。在第一阶段,我们将基于 1) 考虑滥用背后的多个方面(急性和慢性尼古丁的奖励作用、戒断症状的缓解、复发、焦虑、抑郁、认知功能障碍和冲动),2) 吸烟的定义来开发一组测试。通过机器学习算法训练戒烟预测分数,该算法在我们的测试电池中使用有效和无效药物生成的行为数据集上进行训练,以及 3)最小化动物和吞吐量成本。在第二阶段,该平台将发展成为一个包含假定戒烟潜力的化合物和作用机制的数据库,按其戒烟分数和预测在对抗尼古丁依赖的情感和认知方面的优势进行优先排序。最后,该平台(电池、数据库和计算工具)将在第三阶段作为药物筛选方法提供给私人公共合作伙伴关系的成员,该合作伙伴关系的创建是为了维护、支持、进一步开发和宣传该平台。该项目的新颖性在于结合了经济原理和生物信息学方法,以利用 FDA 批准的现有戒烟黄金标准,在拟议的临床前电池中纳入认知和情绪状态相关测试,创建知识数据库,并由公私联盟管理最终平台,以确保最大的质量、价值和访问。我们期望该项目产生的知识和工具将刺激戒烟以及药物滥用和发现的其他领域的进一步研究和药物开发。 公共健康相关性:预测性戒烟临床前电池尽管在成瘾神经生物学的理解以及戒烟疗法的开发和批准方面取得了巨大进步,但仍然迫切需要更好的戒烟辅助工具。我们的目标与 NIDA 的意图一致,即利用科学的力量来解决药物滥用和成瘾问题。我们建议使用广泛学科的工具,并承诺快速有效地传播和使用拟议研究的结果,以显着改善尼古丁滥用和成瘾的治疗。我们建议使用的平台将有助于识别、评估和开发治疗尼古丁滥用和成瘾的创新药物。我们建议通过与学术界、工业界和政府合作实施一项研究计划。多种戒烟药物的存在为创建改进的研究工具以发现和开发新颖且更有效的戒烟药物创造了重大机会。我们建议在全面的临床前测试组中比较有效的戒烟药物和无效的药物,以捕获最能区分两种药物的特征。我们将使用新颖的统计和计算工具来确定哪些更快、更便宜的测试子集是区分这两类所必需的,以创建优化的预测测试电池。然后,我们将使用新型筛选电池来表征一系列化合物,这些化合物被认为是未来抗吸烟药物的有希望的候选者。使用生物信息学方法,我们将这些有前途的化合物与 FDA 批准的一组有效化合物进行比较,并为它们分配一个预测评分,该评分代表此类化合物在临床上有效的可能性。我们将进一步优先考虑显示出额外积极特征的化合物,例如促认知或抗焦虑作用。如果成功,该项目将对新型戒烟药物的发现和开发的成本和效率产生巨大影响,最终挽救数百万人的生命并节省数百万美元。 经济产出和医疗费用损失。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Brunner其他文献

Daniela Brunner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Brunner', 18)}}的其他基金

Machine Learning Phenotypic De Novo Drug Design
机器学习表型从头药物设计
  • 批准号:
    10762633
  • 财政年份:
    2023
  • 资助金额:
    $ 82.92万
  • 项目类别:
Higher Throughput Behavioral Screening of Cognitive
更高吞吐量的认知行为筛查
  • 批准号:
    7054033
  • 财政年份:
    2006
  • 资助金额:
    $ 82.92万
  • 项目类别:
Higher Throughput Behavioral Screening of Cognitive Enhancers
认知增强剂的更高通量行为筛选
  • 批准号:
    7169555
  • 财政年份:
    2006
  • 资助金额:
    $ 82.92万
  • 项目类别:
Animal Models of Schizophrenia: NRG-erbB Function
精神分裂症动物模型:NRG-erbB 功能
  • 批准号:
    6855763
  • 财政年份:
    2004
  • 资助金额:
    $ 82.92万
  • 项目类别:
Animal Models of Schizophrenia: NRG-erbB Function
精神分裂症动物模型:NRG-erbB 功能
  • 批准号:
    6737260
  • 财政年份:
    2004
  • 资助金额:
    $ 82.92万
  • 项目类别:
Wolframin gene ablation in mice as a model for human men
小鼠中的 Wolframin 基因消融作为人类男性的模型
  • 批准号:
    6710124
  • 财政年份:
    2003
  • 资助金额:
    $ 82.92万
  • 项目类别:
Spinal Cord Injury: Automatic Scoring of Motor Function
脊髓损伤:运动功能自动评分
  • 批准号:
    6695163
  • 财政年份:
    2003
  • 资助金额:
    $ 82.92万
  • 项目类别:
Wolframin gene ablation in mice as a model for human men
小鼠中的 Wolframin 基因消融作为人类男性的模型
  • 批准号:
    6584502
  • 财政年份:
    2003
  • 资助金额:
    $ 82.92万
  • 项目类别:
Highthroughput analysis of behavior for CNS applications
CNS 应用行为的高通量分析
  • 批准号:
    6751402
  • 财政年份:
    2002
  • 资助金额:
    $ 82.92万
  • 项目类别:
Highthroughput analysis of behavior for CNS applications
CNS 应用行为的高通量分析
  • 批准号:
    6777491
  • 财政年份:
    2002
  • 资助金额:
    $ 82.92万
  • 项目类别:

相似国自然基金

神经系统中动作电位双稳传导研究
  • 批准号:
    12375033
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
  • 批准号:
    31930061
  • 批准年份:
    2019
  • 资助金额:
    303 万元
  • 项目类别:
    重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
  • 批准号:
    61901469
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
  • 批准号:
    81900300
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-Throughput Screens to Discover Novel Inhibitors of Leaky RyR2 for Heart Failure Therapy
高通量筛选发现用于心力衰竭治疗的漏性 RyR2 新型抑制剂
  • 批准号:
    10064096
  • 财政年份:
    2018
  • 资助金额:
    $ 82.92万
  • 项目类别:
In silico Safety Pharmacology
计算机安全药理学
  • 批准号:
    9288209
  • 财政年份:
    2016
  • 资助金额:
    $ 82.92万
  • 项目类别:
Predictive Smoking Cessation Preclinical Battery
预测性戒烟临床前电池
  • 批准号:
    8934076
  • 财政年份:
    2014
  • 资助金额:
    $ 82.92万
  • 项目类别:
Predictive Smoking Cessation Preclinical Battery
预测性戒烟临床前电池
  • 批准号:
    8901369
  • 财政年份:
    2014
  • 资助金额:
    $ 82.92万
  • 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
  • 批准号:
    7293610
  • 财政年份:
    2006
  • 资助金额:
    $ 82.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了