The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
基本信息
- 批准号:10677932
- 负责人:
- 金额:$ 57.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:ARNTL geneAccelerationAddressAffectAfferent NeuronsAgonistAxonAxotomyBasic ScienceBindingBioinformaticsBiological AssayBrain-Derived Neurotrophic FactorChromatinClinicalCohort StudiesCollaborationsDNA mappingDataEnzymesEpigenetic ProcessExhibitsGatekeepingGenesGeneticGenetic TranscriptionHourImmuneImmune responseImmunologicsIn VitroInjuryInvestigationKnockout MiceLaboratoriesLinkMapsMediatingMetabolismModelingMolecularMusNatural regenerationNerve RegenerationNeuritesNeuroimmuneNeuronsOutputPathway interactionsPenetrationPeriodicityPeripheralPeripheral nerve injuryPhasePhenotypePilot ProjectsProcessReconstructive Surgical ProceduresRegenerative responseRegulationReportingRestRoleSeriesSex DifferencesShapesSignal TransductionSpinal GangliaTestingTimeWorkaxon growthaxon injuryaxon regenerationbeta catenincell typecircadiancircadian biologycircadian pacemakercomparative efficacyconditional knockoutdesigneffective therapyefficacy evaluationgene inductiongenome-widegenomic locusimmune activationin vivoinhibitorinsightnerve injurynerve repairneuralnovelpharmacologicprogramsrecruitregenerativerepairedresponsesciatic nerve injurysextranscription factortranscriptomics
项目摘要
Project Summary
Axon regeneration after peripheral nerve (PN) injury is often incomplete. There is currently no effective
treatment beyond surgical reconstruction, which is only beneficial for a small percentage of cases.
Understanding the repair mechanisms is thus crucial. Here, we investigate a previously unknown function of
the core circadian regulator Bmal1 in gating neuroregenerative responses after PN injury. The study is based
on our new data that neuron-specific deletion of Bmal1 accelerates axon regeneration after PN injury. This
exciting finding was made in the context of a series of advances from our laboratory in deciphering
transcriptional networks that control neuronal intrinsic axon growth potential, i.e., how transcription factors
(TFs) cooperate with epigenetic factors to reshape the chromatin landscape for induction of regeneration-
associated genes (RAGs). Our most recent work has leveraged our genome-wide mapping of DNA
hydroxymethylation (5hmC) dynamics in regenerating dorsal root ganglia (DRG) neurons. Intriguingly, we
discovered enrichment of the Bmal1 binding motifs in genomic loci displaying 5hmC changes after PN injury,
suggesting an interaction of Bmal1 with the 5mC/5hmC converting enzyme Tet3. Indeed, Bmal1 cKO in mice
showed that the Bmal1-Tet3-5hmC axis regulates genes linked to axon growth, metabolism, and immune
interactions. Moreover, pilot data show for the first-time a diurnal epigenetic rhythm of Tet3 and 5hmC in DRG
neurons that is anti-phasic to Bmal1 transcriptional oscillation and corresponds to time-of-day differences in
regenerative responses. Here, we will test the central hypothesis that Bmal1 functions as an inhibitor of axon
regeneration and a gatekeeper of injury-trigged immune activation via regulation of 5hmC reprogramming. In
Aim 1, we will characterize Bmal1-gated regenerative gene programs and examine the effect of
pharmacological inhibition of Bmal1 transcription by SR9009, a potent Rev-Erb agonist with CNS penetration
capability. Mechanistically, we will test a “two-hit model” wherein Bmal1 deletion primes DRG neurons, but an
injury signal is required for RAGs induction. In Aim 2, we will characterize Tet3/5hmC epigenetic rhythmicity,
correlation with “neurite outgrowth clock”, and the underlying mechanisms by testing the working model that
Bmal1 controls Tet3 expression as well as Tet3 recruitment to target loci for 5hmC reprogramming. We will
then map short- and long-term impact of PN injury on Bmal1-Tet3-5hmC rhythmicity and whether these
rhythms return to normal upon axonal reconnection. In Aim 3, we pivot to in vivo study of the promoting effect
of Bmal1 inhibition on nerve repair, including motosensory functions. We will also address sustainability of the
effect, sex differences, and timed Bmal1 inhibition shortly after PN injury. In sum, our proposal has the
potential of connecting Bmal1 circadian pathway, Tet3/5hmC epigenetic reprogramming, injury-triggered
immune responses, and axon regeneration, thus advancing basic science of nerve regeneration and opening
translational paths.
项目概要
周围神经(PN)损伤后的轴突再生往往不完全,目前尚无有效的方法。
手术重建以外的治疗方法仅对一小部分病例有益。
因此,了解修复机制至关重要。在这里,我们研究了以前未知的功能。
该研究基于核心昼夜节律调节因子 Bmal1 控制 PN 损伤后的神经再生反应。
根据我们的新数据,神经元特异性删除 Bmal1 可加速 PN 损伤后的轴突再生。
我们实验室在破译方面取得了一系列进展,取得了令人兴奋的发现
控制神经内在轴突生长潜力的转录网络,即转录因子如何
(TF)与表观遗传因子合作重塑染色质景观以诱导再生-
我们最近的工作利用了全基因组 DNA 作图。
有趣的是,我们研究了背根神经节(DRG)神经元再生中的羟甲基化(5hmC)动态。
发现 PN 损伤后显示 5hmC 变化的基因组位点中 Bmal1 结合基序的富集,
表明 Bmal1 与 5mC/5hmC 转换酶 Tet3 存在相互作用。事实上,Bmal1 在小鼠体内被 cKO。
研究表明 Bmal1-Tet3-5hmC 轴调节与轴突生长、代谢和免疫相关的基因
此外,试验数据首次显示 DRG 中 Tet3 和 5hmC 的昼夜表观遗传节律。
与 Bmal1 转录振荡反相的神经元,对应于一天中时间差异
在这里,我们将测试 Bmal1 作为轴突抑制剂的中心假设。
通过调节 5hmC In 重编程来实现再生和损伤触发免疫激活的看门人。
目标 1,我们将描述 Bmal1 门控再生基因程序的特征并检查其效果
SR9009(一种具有中枢神经系统渗透性的强效 Rev-Erb 激动剂)对 Bmal1 转录的药理学抑制
从机制上讲,我们将测试 Bmal1 删除启动 DRG 神经元的“两次打击模型”,但
RAG 诱导需要损伤信号。在目标 2 中,我们将表征 Tet3/5hmC 表观遗传节律性。
与“神经突生长时钟”的相关性,以及通过测试工作模型的潜在机制
Bmal1 控制 Tet3 表达以及 Tet3 招募到 5hmC 重编程的目标位点。
然后绘制 PN 损伤对 Bmal1-Tet3-5hmC 节律性的短期和长期影响,以及这些影响是否
在轴突重新连接后节律恢复正常在目标 3 中,我们转向促进作用的体内研究。
Bmal1 抑制对神经修复(包括运动感觉功能)的影响我们还将解决神经修复的可持续性问题。
效果、性别差异和 PN 损伤后不久的定时 Bmal1 抑制 总而言之,我们的建议有:
连接 Bmal1 昼夜节律通路的潜力、Tet3/5hmC 表观遗传重编程、损伤触发
免疫反应和轴突再生,从而推进神经再生和开放的基础科学
翻译路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyan Zou其他文献
Hongyan Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyan Zou', 18)}}的其他基金
Promoting axon regeneration by activation of the Smad1 signaling pathway
通过激活 Smad1 信号通路促进轴突再生
- 批准号:
8699280 - 财政年份:2011
- 资助金额:
$ 57.59万 - 项目类别:
Promoting axon regeneration by activation of the Smad1 signaling pathway
通过激活 Smad1 信号通路促进轴突再生
- 批准号:
8485698 - 财政年份:2011
- 资助金额:
$ 57.59万 - 项目类别:
Promoting axon regeneration by activation of the Smad1 signaling pathway
通过激活 Smad1 信号通路促进轴突再生
- 批准号:
8287067 - 财政年份:2011
- 资助金额:
$ 57.59万 - 项目类别:
Promoting axon regeneration by activation of the Smad1 signaling pathway
通过激活 Smad1 信号通路促进轴突再生
- 批准号:
8193492 - 财政年份:2011
- 资助金额:
$ 57.59万 - 项目类别:
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Circadian Clock and Myc-dependent Regulation of Cellular Transformation
生物钟和细胞转化的 Myc 依赖性调节
- 批准号:
10767049 - 财政年份:2023
- 资助金额:
$ 57.59万 - 项目类别:
Circadian Clock and Myc-dependent Regulation of Cellular Transformation
生物钟和细胞转化的 Myc 依赖性调节
- 批准号:
10544733 - 财政年份:2022
- 资助金额:
$ 57.59万 - 项目类别:
Circadian rhythms and alcohol in the BMAL1 knockout rat
BMAL1 敲除大鼠的昼夜节律和酒精
- 批准号:
10707005 - 财政年份:2022
- 资助金额:
$ 57.59万 - 项目类别:
Clock modulation in circadian desynchrony induced diabetes and atherovascular disease - mechanisms and interventions
昼夜节律不同步引起的糖尿病和动脉粥样硬化疾病的时钟调节 - 机制和干预措施
- 批准号:
10614035 - 财政年份:2021
- 资助金额:
$ 57.59万 - 项目类别:
Circadian Mechanisms of Hedonic Feeding in Obesity
肥胖症享乐喂养的昼夜节律机制
- 批准号:
10640934 - 财政年份:2021
- 资助金额:
$ 57.59万 - 项目类别: