STUDIES OF THE TRANSMEMBRANE SELENOPROTEIN K AND ITS ROLE IN OXIDATIVE DEFENSE

跨膜硒蛋白 K 及其氧化防御作用的研究

基本信息

  • 批准号:
    8364948
  • 负责人:
  • 金额:
    $ 10.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Selenium is an essential element in all branches of life, where its strong nucleophilicity, redox activity, metal binding capacities, and low pKa are utilized to catalyze redox and electron transfer reactions. In human health, selenium compounds and selenoproteins contribute to chemopreventive, anti-inflammatory, and antiviral defense. This project focuses on elucidating the unknown structure and function of the selenium-containing membrane protein, selenoprotein K (SelK). SelK is a small (94 residues) protein with a single-pass transmembrane helix predicted at its N terminus, and a selenocysteine at its C terminus. It has been shown to reduce internal levels of reactive oxygen species and to protect cells against oxidative stress. Oxidative stress, caused by externally and internally generated reactive oxygen species (ROS), is an unavoidable corollary of aerobic life and is tightly connected to longevity. ROS tend to concentrate in the lipid bilayer where oxygen and other free radicals are more soluble. Not surprisingly, ROS are prone to modify both lipids and membrane proteins, with lipid peroxidation being the most common ROS-induced damage. Such modified lipids change the physico-chemical properties, e.g. fluidity and curvature stress of the lipid bilayer, and thus destabilize biomembranes. Due to the specialized cellular roles of selenoproteins, SelK's participation in anti-oxidant defense in vivo and SelK's membrane localization, we hypothesize that SelK is involved in protecting biomembranes against reactive carbonyl species generated by lipid oxidation. To facilitate its structural and biophysical characterization we are developing bacterial overexpression and purification strategies for both the native selenium and sulfur-substituted SelK. The oligomerization state of SelK and sample conditions for structural characterization will be evaluated. To identify the role of SelK in oxidative stress and signaling, we will use functional assays to test for its potential peroxidase activity. Our long-term goal is to delineate the biochemical role of SelK, the unique contribution of selenium to its reactivity, and SelK function in its native membrane environment.
该副本是利用资源的众多研究子项目之一 由NIH/NCRR资助的中心赠款提供。对该子弹的主要支持 而且,副投影的主要研究员可能是其他来源提供的 包括其他NIH来源。 列出的总费用可能 代表subproject使用的中心基础架构的估计量, NCRR赠款不直接向子弹或副本人员提供的直接资金。 硒是生命所有分支中的重要元素,其强核性,氧化还原活性,金属结合能力和低PKA可用于催化氧化还原和电子转移反应。在人类健康方面,硒化合物和硒蛋白有助于化学预防,抗炎和抗病毒防御。该项目的重点是阐明含硒的膜蛋白硒蛋白K(SELK)的未知结构和功能。 SELK是一种小的(94个残基)蛋白,其N末端预测了单个跨膜螺旋,其C末端的硒代半胱氨酸。已证明它可以降低活性氧的内部水平并保护细胞免受氧化应激。由外部和内部产生的活性氧(ROS)引起的氧化应激是有氧生活的不可避免的推论,并且与寿命紧密相连。 ROS倾向于将氧气和其他自由基更可溶的脂质双层集中在脂质双层中。毫不奇怪,ROS容易修饰脂质和膜蛋白,脂质过氧化是最常见的ROS诱导的损伤。这种修饰的脂质改变了物理化学特性,例如脂质双层的流动性和曲率应力,从而破坏生物膜的稳定性。由于硒蛋白的专门细胞作用,SELK参与体内抗氧化剂防御和Selk的膜定位,我们假设SELK参与保护生物膜免受脂质氧化产生的反应性羰基物种。 为了促进其结构和生物物理特征,我们正在为天然硒和硫取代的selk开发细菌过表达和纯化策略。将评估SELK的寡聚状态和结构表征的样本条件。为了确定SELK在氧化应激和信号传导中的作用,我们将使用功能测定来测试其潜在的过氧化物酶活性。我们的长期目标是描述Selk的生化作用,Selenium对其反应性的独特贡献以及SELK在其本地膜环境中的功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharon Rozovsky其他文献

Sharon Rozovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharon Rozovsky', 18)}}的其他基金

Selenoproteins in the ER-associated protein degradation pathway
ER 相关蛋白降解途径中的硒蛋白
  • 批准号:
    10152599
  • 财政年份:
    2017
  • 资助金额:
    $ 10.53万
  • 项目类别:
Selenoproteins in the ER-associated protein degradation pathway
ER 相关蛋白降解途径中的硒蛋白
  • 批准号:
    9690137
  • 财政年份:
    2017
  • 资助金额:
    $ 10.53万
  • 项目类别:
LANOSTEROL BIOSYNTHESIS IN THE MEMBRANE ENVIRONMENT
膜环境中的羊毛甾醇生物合成
  • 批准号:
    7959547
  • 财政年份:
    2009
  • 资助金额:
    $ 10.53万
  • 项目类别:

相似海外基金

Development of small molecule inhibitors as anti-inflammatory agents and antidotes for arsenicals
开发作为抗炎剂和砷解毒剂的小分子抑制剂
  • 批准号:
    10727507
  • 财政年份:
    2023
  • 资助金额:
    $ 10.53万
  • 项目类别:
Discovery of New Anti-Inflammatory Agents to Treat COPD
发现治疗慢性阻塞性肺病的新型抗炎药
  • 批准号:
    9194162
  • 财政年份:
    2016
  • 资助金额:
    $ 10.53万
  • 项目类别:
Synthesis of anti-inflammatory agents and their structure-activity relationships studies
抗炎药的合成及其构效关系研究
  • 批准号:
    496858-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.53万
  • 项目类别:
    University Undergraduate Student Research Awards
NAAA Inhibitors as Anti-inflammatory Agents, Phase II
NAAA 抑制剂作为抗炎剂,II 期
  • 批准号:
    9201955
  • 财政年份:
    2015
  • 资助金额:
    $ 10.53万
  • 项目类别:
Novel flavonoids as anti-inflammatory agents in alcoholism
新型黄酮类化合物作为酒精中毒的抗炎剂
  • 批准号:
    8251289
  • 财政年份:
    2014
  • 资助金额:
    $ 10.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了