Translational control of a complete developing sensory circuit
完整发育中的感觉回路的平移控制
基本信息
- 批准号:10678098
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAtlasesBioinformaticsBiological AssayBiological ModelsBirthCaringCell physiologyCellsChromatinDevelopmentDrosophila genusEngineeringEpigenetic ProcessGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenetic TranscriptionGenomeGenomicsGlutamatesGrowthHealthHomeostasisHuman DevelopmentImpairmentIndividualInvertebratesIon ChannelLinkMachine LearningMessenger RNAMethodsMicroRNAsModelingMolecularMorphologyNervous SystemNeurodegenerative DisordersNeuronal DifferentiationNeuronsNeurosciencesNeurotransmittersOptic LobeOrganPathway interactionsPatternPhysiologyPost-Transcriptional RegulationProcessProtein BiosynthesisProteinsRNARNA-Binding ProteinsRNA-Protein InteractionRegulationRepressionReproducibilityResearchRoleSensoryShapesSignal PathwaySpecific qualifier valueSubcellular SpacesSynapsesSystemTechnical ExpertiseTechniquesTestingTherapeuticTissuesTrainingTranscriptTranslatingTranslational RegulationTranslational RepressionTranslationsVertebratesVisual SystemWorkWritingaxon guidancecell typecholinergicdata disseminationderepressiondesignexperimental studyflygenome-widegenome-wide analysisimprovedinsightmRNA Translationnervous system developmentneuralneurodevelopmentneurotransmissionribosome profilingsensory systemsingle-cell RNA sequencingtechnological innovationtooltranscriptometranscriptomics
项目摘要
Project Summary
Development of the nervous system requires the generation of diverse neuronal types that subsequently
drastically alter their shape and physiology to form vast interconnected networks. Each process requires
precise gene regulation. Technological innovations have drastically increased the scale at which we can
distinguish neuronal identities or stages based on transcriptomics or epigenetics. However, principles guiding
post-transcriptional control of gene expression, which is essential for neural development and homeostasis, by
regulatory factors including RNA-binding proteins (RBP) and miRNAs has not been defined at a similar
systematic level. As numerous neurodegenerative disorders have been linked to impaired RBP-RNA
interactions, and there is a huge need for improved cell type engineering strategies for therapeutics, insight
into this process is critically important. I propose to use the Drosophila visual system as a model to study post-
transcriptional regulation during specification and wiring of an entire neural sensory system. Specifically, this
proposal focuses on the regulation of mRNA translational repression, which is a conserved feature of both
neuronal fate diversification and differentiation in vertebrate and invertebrates. A single-cell transcriptomic atlas
of the developing visual system, or optic lobe, was recently described which defines the transcriptome of each
neuronal type in the optic lobe throughout development. Consistent with results from other model systems,
many genes associated with terminal neuronal function were detected at transcripts in the immature neurons
well before they are functionally required, and the corresponding protein was absent for two selected genes
studied. I aim to define the scope of translational regulation in this system by first performing whole-tissue and
select cell-specific ribosome profiling of the optic lobe over development, and determine the upstream control
of this process using a combination of bioinformatics and genetics (Aim 1). Next I will tease apart the molecular
and cellular mechanism by which two genes associated with different neuron signaling pathways are repressed
at the translational level to assess how their expression is coordinated (Aim 2). Finally, I will adapt a single-cell
translation profiling technique, scRibo-STAMP, in the Drosophila visual system to profile translation of all optic
lobe neurons during specification and wiring. Combined with machine-learning based analysis, I will predict
RBP/miRNA-RNA target interactions to gain fundamental insight into how RNA regulatory networks are shaped
(Aim 3). Together this study will provide significant insights into the role of translational regulation during
formation of the nervous system relevant to both human development and health.
项目概要
神经系统的发育需要产生不同的神经元类型,随后
彻底改变它们的形状和生理机能,形成巨大的互连网络。每个过程都需要
精准的基因调控。技术创新极大地扩大了我们的规模
根据转录组学或表观遗传学区分神经元身份或阶段。然而,指导原则
基因表达的转录后控制,这对于神经发育和稳态至关重要
包括 RNA 结合蛋白 (RBP) 和 miRNA 在内的调控因子尚未在类似的研究中得到定义。
系统化水平。由于许多神经退行性疾病与 RBP-RNA 受损有关
相互作用,并且非常需要改进用于治疗、洞察的细胞类型工程策略
进入这个过程至关重要。我建议使用果蝇视觉系统作为模型来研究后处理
整个神经感觉系统的规范和连接过程中的转录调节。具体来说,这
提案重点关注 mRNA 翻译抑制的调节,这是两者的保守特征
脊椎动物和无脊椎动物的神经元命运多样化和分化。单细胞转录组图谱
最近描述了发育中的视觉系统或视叶的转录组,它定义了每个视觉系统的转录组
整个发育过程中视叶的神经元类型。与其他模型系统的结果一致,
在未成熟神经元的转录本中检测到许多与终末神经元功能相关的基因
早在它们被功能需要之前,两个选定的基因就缺乏相应的蛋白质
研究过。我的目标是通过首先进行全组织和
选择发育过程中视叶的细胞特异性核糖体分析,并确定上游控制
结合生物信息学和遗传学来研究这一过程(目标 1)。接下来我将梳理一下分子
以及与不同神经元信号通路相关的两个基因被抑制的细胞机制
在翻译水平上评估它们的表达是如何协调的(目标 2)。最后,我将改编一个单细胞
果蝇视觉系统中的平移分析技术 scRibo-STAMP 可分析所有光学系统的平移
叶神经元在规范和接线期间。结合基于机器学习的分析,我将预测
RBP/miRNA-RNA 靶标相互作用,以获得有关 RNA 调控网络如何形成的基本见解
(目标 3)。总之,这项研究将为翻译调控在过程中的作用提供重要的见解。
神经系统的形成与人类发育和健康相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan E Loker其他文献
Ryan E Loker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cadmium and Arsenic Effects on Pyrimidine Biosynthesis in Early Airway Development
镉和砷对早期气道发育中嘧啶生物合成的影响
- 批准号:
10568094 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
- 批准号:
10580294 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
A multi-modal, brain-wide atlas of astrocyte diversity across developmental stages and model species
跨发育阶段和模型物种的星形胶质细胞多样性的多模式、全脑图谱
- 批准号:
10677211 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Locus coeruleus network architecture of Alzheimer's disease vulnerability
阿尔茨海默病脆弱性的蓝斑网络架构
- 批准号:
10662875 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Affordable Shortwave Infrared Spectroscopy for Stroke Risk Screening in Children with Sickle Cell Disease
经济实惠的短波红外光谱仪用于镰状细胞病儿童中风风险筛查
- 批准号:
10730967 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: