Identifying gut bacterial molecules and mechanisms that promote an anti-tumor response to immunotherapy
识别肠道细菌分子和促进免疫疗法抗肿瘤反应的机制
基本信息
- 批准号:10677530
- 负责人:
- 金额:$ 18.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AntibioticsAntibodiesAntitumor ResponseBacteriaBioinformaticsBiologicalBlocking AntibodiesBreedingCD8-Positive T-LymphocytesCancer ModelCancer PatientCell CommunicationCell physiologyCellsCellular AssayChemistryClinicCoculture TechniquesCollaborationsColonCombined Modality TherapyDataDendritic CellsDiseaseDrug IndustryEnvironmentEpitheliumExclusionFlow CytometryGerm-FreeGnotobioticGoalsHuman MicrobiomeImmuneImmune responseImmune systemImmunotherapyIn VitroIndividualIndustryIntestinesIon-Exchange Chromatography ProcedureKnockout MiceLabelLearningLegal patentMacrophageMalignant NeoplasmsMediatingMicrobeMicrofluidicsMotivationMusOrganoidsPD-1 blockadePathway interactionsPatientsPlayQualifyingResearchRoleRunningSignal PathwaySignaling MoleculeSiteSterilityStructureSurfaceT-LymphocyteT-bet proteinTestingTherapeuticTherapeutic UsesTrainingTranslationsTumor ImmunityWorkanti-CTLA4anti-PD-1anti-PD-L1anti-PD-L1 therapyanti-canceranti-tumor immune responsecancer cellcancer therapycheckpoint therapyclinical translationcommensal microbesdraining lymph nodeexperiencegastrointestinal epitheliumgut bacteriagut microbesgut microbiotaimmune checkpointimmune checkpoint blockadein vivomedical schoolsmesenteric lymph nodemicrobiotanovel therapeuticspharmacologicpre-clinicalprofessional atmosphereprogrammed cell death ligand 1programmed cell death protein 1responseskillsstemtherapeutically effectivetranscriptome sequencingtumor
项目摘要
Project Summary
The immune system is capable of mounting a robust anti-cancer response. However, cancer cells can
disrupt this immune response, hijacking immune checkpoint mechanisms which act as brakes on the
endogenous anti-cancer response. Antibodies that block immune checkpoints (e.g., a-PD-L1, a-PD-1, and a-
CTLA4) have revolutionized cancer treatments, yet, only a fraction of patients respond. Understanding the
underlying mechanisms that promote a durable anti-tumor response to checkpoint blockade therapy is crucial
to develop effective therapeutics that can treat a wider range of cancer patients. The gut microbiota is a key
variable in the anti-tumor response to immunotherapy, even for tumors outside of the intestine. The goal of this
project is to identify gut bacterial molecules that promote an anti-tumor response to PD-1 blockade and their
mechanisms of action. I hypothesize that certain gut bacterial surface components prime immune cells and
these bacterial-immune interactions within the gut are essential for the anti-tumor immune response to PD-1
blockade at extra-intestinal sites. I propose to test this hypothesis by determining the key immune components
of the microbe-dependent immune response in the tumor (Aim 1), the key bacterial molecules which promote
the anti-tumor response (Aim 2), and the mechanisms by which microbes and immune cells interact within the
gut (Aim 3). These studies are significant because by identifying active, anti-tumor gut bacterial molecules and
mechanisms, more effective therapeutics can be developed that will broaden the range of patients who
respond to checkpoint therapy.
My long-term goal is to run a research group that investigates the interactions between gut bacteria and
the immune system. My motivation is to identify new bacterial molecules and their mechanisms of action that
can be harnessed in the clinic as therapeutics for cancer and other diseases. I trained in Dennis Kasper’s lab
gaining expertise in gnotobiotic mouse work, microbiota analysis and culture, click chemistry, and bacterial
molecule separation leading to the preliminary data for Aims 1-3. To learn about the immune response to PD-1
blockade and co-signaling molecules, I collaborated with Arlene Sharpe’s lab and obtained preliminary data for
Aims 1-3. This collaboration has led to two patent applications and discussions with industry for drug
translation. To understand how bacteria directly interact with gut cells, I developed a mouse microfluidic gut
chip in a collaboration with Donald Ingber’s lab at the Wyss institute at Harvard that I plan to use in Aims 2 and
3. By taking advantage of the excellent work environment at Harvard Medical School, I have acquired a
unique skill set stemming from experience with both the academic research environment and with industry
discussions for clinical translation. This training enables me to run my own research group that will investigate
gut bacterial/immune interactions that can be employed to create novel therapeutics.
项目概要
免疫系统能够产生强大的抗癌反应,但癌细胞却可以。
破坏这种免疫反应,劫持免疫检查点机制,从而起到制动作用
阻断免疫检查点的内源性抗癌反应抗体(例如 a-PD-L1、a-PD-1 和 a-)
CTLA4)彻底改变了癌症治疗,但只有一小部分患者有反应。
促进检查点阻断治疗持久抗肿瘤反应的潜在机制至关重要
开发能够治疗更广泛癌症患者的有效疗法,肠道微生物群是关键。
即使对于肠道外的肿瘤,免疫治疗的抗肿瘤反应也存在差异。
该项目的目的是鉴定肠道细菌分子,促进对 PD-1 阻断的抗肿瘤反应及其
我认为某些肠道细菌表面成分会启动免疫细胞和
肠道内的这些细菌-免疫相互作用对于 PD-1 的抗肿瘤免疫反应至关重要
我建议通过确定关键的免疫成分来检验这一假设。
肿瘤中微生物依赖性免疫反应(目标 1)的关键细菌分子,促进
抗肿瘤反应(目标 2),以及微生物和免疫细胞在细胞内相互作用的机制
这些研究意义重大,因为通过识别活性、抗肿瘤的肠道细菌分子和
机制,可以开发更有效的治疗方法,扩大患者范围
对检查点治疗有反应。
我的长期目标是组建一个研究小组,研究肠道细菌和肠道细菌之间的相互作用。
我的动机是识别新的细菌分子及其作用机制。
可以在诊所中用作丹尼斯·卡斯珀实验室针对癌症和其他疾病的治疗方法。
获得无菌小鼠工作、微生物群分析和培养、点击化学和细菌方面的专业知识
分子分离产生目标 1-3 的初步数据 了解 PD-1 的免疫反应。
封锁和协同信号分子,我与 Arlene Sharpe 的实验室合作,获得了初步数据
目标 1-3。此次合作促成了两项专利申请并与药物行业进行了讨论。
为了了解细菌如何与肠道细胞直接相互作用,我开发了小鼠微流体肠道。
与哈佛大学 Wyss 研究所的 Donald Ingber 实验室合作的芯片,我计划在 Aims 2 和
3. 利用哈佛医学院优良的工作环境,我获得了
源自学术研究环境和行业经验的独特技能
临床翻译的讨论使我能够管理自己的研究小组来进行调查。
肠道细菌/免疫相互作用,可用于创造新的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Smylie Gazzaniga其他文献
Francesca Smylie Gazzaniga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗体依赖性增强效应介导非洲猪瘟病毒致病的分子机制
- 批准号:32373024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
抗体修饰的靶向型MOF材料的构建及其诱导HER2阳性乳腺癌铜死亡协同效应的研究
- 批准号:52371256
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
抗猴痘病毒人源抗体的筛选及功能研究
- 批准号:32370992
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AQP4抗体介导血小板炎症参与视神经脊髓炎器官局域免疫发生的机制研究
- 批准号:82371349
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核-巨噬细胞来源的LAMP3调控ROS通路参与抗MDA5抗体阳性皮肌炎肺间质纤维化机制研究
- 批准号:82302051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of the gut microbiome in ICB-induced anti-tumor response and toxicity
肠道微生物组在 ICB 诱导的抗肿瘤反应和毒性中的作用
- 批准号:
10606715 - 财政年份:2023
- 资助金额:
$ 18.71万 - 项目类别:
Microbiota-mediated enhancement of the anti-tumor effect of natural killer cells
微生物介导的自然杀伤细胞抗肿瘤作用的增强
- 批准号:
10435626 - 财政年份:2022
- 资助金额:
$ 18.71万 - 项目类别:
Microbiota-mediated enhancement of the anti-tumor effect of natural killer cells
微生物介导的自然杀伤细胞抗肿瘤作用的增强
- 批准号:
10654555 - 财政年份:2022
- 资助金额:
$ 18.71万 - 项目类别:
Dissecting Gut Microbiota Modulation on Brain Metastasis Progression
剖析肠道微生物群对脑转移进展的调节
- 批准号:
10381487 - 财政年份:2021
- 资助金额:
$ 18.71万 - 项目类别:
Mechanism of microbiota-mediated potentiation of checkpoint blockade efficacy in lung cancer
微生物群介导的肺癌检查点阻断功效增强机制
- 批准号:
10436388 - 财政年份:2021
- 资助金额:
$ 18.71万 - 项目类别: