The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
基本信息
- 批准号:10676907
- 负责人:
- 金额:$ 49.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-12 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnthropometryArtificial IntelligenceBacteriaBig DataBreast FeedingCaringCategoriesCharacteristicsChildChild DevelopmentChild HealthChildhoodChronic DiseaseCohort StudiesCollaborationsDataData ScientistData SetDevelopmentEnsureEnvironmental ExposureEnvironmental Risk FactorFatty AcidsFuture GenerationsGeneticGrantGrowthGrowth and Development functionHealthHumanHuman MilkHypersensitivityIndividualInfantInfant DevelopmentInfant HealthInfectionInfrastructureInternationalLactationLifeLife StyleMacronutrients NutritionMetadataMicronutrientsMilkMilk SubstitutesMothersNutrientNutritional StudyOligosaccharidesParentsPhenotypePositioning AttributePregnancyProteinsResearchResearch PersonnelResolutionResourcesSamplingScientistSystemSystems BiologySystems DevelopmentVariantWheezingWorkatopybiobankbiological systemscohortcomplex biological systemsdesigndisorder preventionearly childhoodfeedingimprovedinfancyinfant nutritioninnovationlifestyle factorsmachine learning methodmethod developmentmicrobiomemicrobiotamultiple omicsnovelnutritionprogramsunsupervised learning
项目摘要
PROJECT SUMMARY
Significance: Human milk (HM) has evolved over millions of years to nourish and protect human infants - yet
we know surprisingly little about its composition, variation, and function. Traditionally, HM research has focused
on individual HM components, yet HM is a complex biological system comprising thousands of components
that interact and function in combination. Moreover, while HM composition is known to be affected by maternal,
infant, and environmental factors, these are poorly understood and rarely examined simultaneously. To address
these gaps, our team is championing a multi-omics systems biology approach to study HM as a “system within
a system”, reflecting that milk itself is a system embedded within the “mother-milk-infant” triad.
Approach: This grant will leverage and unite two established HM research platforms to investigate HM and its
determinants and health impacts among 1600 mother-infant dyads using a novel multi-omic approach. The
International Milk Composition (IMiC) Consortium is a network of HM researchers and data scientists with an
established infrastructure for multi-omic HM research. CHILD is an ongoing national pregnancy cohort of 3600
children born in 2009-12. Our team has already analyzed 1600 CHILD HM samples for 19 oligosaccharides, 28
fatty acids, and hundreds of bacteria. We will now enhance the rich CHILD dataset with new multi-omic HM
analyses (20 nutrients, 15 non-nutritive bioactive proteins and thousands of metabolites) and apply
unsupervised machine learning methods to identify discrete ‘lactotypes’ (Aim 1). Next, we will leverage the rich
CHILD data to identify maternal, infant and environmental factors associated with lactotype membership and/or
individual HM components (Aim 2). Finally, we will use machine learning methods to understand how HM
composition influences microbiome development, growth, wheezing and allergies during infancy and childhood
(Aim 3).
Innovation: Integrating the CHILD and IMiC platforms will facilitate unprecedented research on HM as a
system-within-a-system and generate the world’s largest and most deeply-phenotyped mother-milk-infant
dataset (n=1600 triads with multi-omic milk profiles and rich longitudinal maternal and infant metadata). This
project will unite expert HM scientists, renowned pediatric researchers and data scientists at the forefront of
multi-omic methods development, placing the interdisciplinary MuMi team in an unrivaled position to make
novel discoveries in this space and revolutionize the way HM is studied and understood.
项目概要
意义:母乳(HM)已经进化了数百万年,以滋养和保护人类婴儿 - 然而
令人惊讶的是,我们对它的组成、变异和功能知之甚少。传统上,HM 研究的重点是。
HM 是一个由数千个组件组成的复杂生物系统
此外,虽然已知 HM 成分会受到母体的影响,
婴儿和环境因素,人们对这些因素知之甚少,也很少同时进行研究。
针对这些差距,我们的团队正在倡导一种多组学系统生物学方法,将 HM 作为“内部系统”进行研究
一个系统”,反映出牛奶本身就是一个嵌入“母乳-婴儿”三位一体的系统。
方法:这笔赠款将利用并联合两个已建立的 HM 研究平台来研究 HM 及其
使用新颖的多组学方法研究 1600 名母婴二人的决定因素和健康影响。
国际牛奶成分 (IMiC) 联盟是一个由 HM 研究人员和数据科学家组成的网络,
已建立多组学 HM 研究基础设施 CHILD 是一个正在进行的全国妊娠队列,共有 3600 人。
我们的团队已经分析了 2009 年 12 月出生的儿童 HM 样本中的 19 种寡糖、28 种。
我们现在将使用新的多组学 HM 来增强丰富的 CHILD 数据集。
分析(20 种营养素、15 种非营养性生物活性蛋白质和数千种代谢物)并应用
接下来,我们将利用无监督的机器学习方法来识别离散的“乳型”(目标 1)。
儿童数据,用于识别与乳型成员相关的母亲、婴儿和环境因素和/或
最后,我们将使用机器学习方法来理解 HM 组件(目标 2)。
成分影响婴儿期和儿童期微生物群的发育、生长、喘息和过敏
(目标 3)。
创新:CHILD 和 IMiC 平台的集成将促进对 HM 作为一种前所未有的研究
系统中的系统并产生世界上最大、表型最深的母乳婴儿
数据集(n=1600 个三联体,具有多组学牛奶谱和丰富的纵向母婴元数据)。
该项目将联合英国皇家医学专家、著名儿科研究人员和处于最前沿的数据科学家
多组学方法开发,使跨学科 MuMi 团队处于无与伦比的地位
该领域的新发现彻底改变了 HM 的研究和理解方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meghan Brianne Azad其他文献
Meghan Brianne Azad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meghan Brianne Azad', 18)}}的其他基金
The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
- 批准号:
10532119 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Improving growth and neurodevelopment of very low birth weight infants through precision nutrition: The Optimizing Nutrition and Milk (Opti-NuM) Project.
通过精准营养改善极低出生体重婴儿的生长和神经发育:优化营养和牛奶 (Opti-NuM) 项目。
- 批准号:
10708940 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Improving growth and neurodevelopment of very low birth weight infants through precision nutrition: The Optimizing Nutrition and Milk (Opti-NuM) Project.
通过精准营养改善极低出生体重婴儿的生长和神经发育:优化营养和牛奶 (Opti-NuM) 项目。
- 批准号:
10597958 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Undernutrition, microbiota maturation, and adaptive immunity in Bangladeshi children
孟加拉国儿童的营养不良、微生物群成熟和适应性免疫
- 批准号:
10718949 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Adult epigenetics and telomere length in relation to improved nutrition in early life
成人表观遗传学和端粒长度与改善早期营养有关
- 批准号:
10562425 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Neighborhood, social connectedness, and allostatic load in US Chinese immigrants
美国华人移民的邻里关系、社会联系和动态负荷
- 批准号:
10651070 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Preconception obesity treatment: maternal bariatric surgery and long-term child health outcomes
孕前肥胖治疗:孕产妇减肥手术和长期儿童健康结果
- 批准号:
10502182 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Preconception obesity treatment: maternal bariatric surgery and long-term child health outcomes
孕前肥胖治疗:孕产妇减肥手术和长期儿童健康结果
- 批准号:
10707144 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别: