CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
基本信息
- 批准号:10675077
- 负责人:
- 金额:$ 33.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-11 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsArchitectureAutomobile DrivingBehaviorBehavioralBehavioral ModelBehavioral ParadigmBiological ModelsBipolar DisorderBirdsBrainCapuchin MonkeyChoice BehaviorChronicCognitiveCollaborationsComplexDataDecision MakingDecision TheoryDependenceDimensionsDiseaseFutureHealthHumanImpairmentImplantIndividualIndividual DifferencesInsuranceKnowledgeMachine LearningMammalsMental disordersModelingModernizationMonitorNeuronsOccupationsOutcomePersonsPopulationPopulation DynamicsProcessRattusRecording of previous eventsRetirementRewardsSavingsSchizophreniaSiliconStructureTechniquesTestingTrainingWagesWaterWorkbehavior measurementbehavioral economicsdynamic systemexpectationexperienceexperimental studyimprovedneuralneural circuitneuropsychiatric disordernovelpreservationrecurrent neural networkreward processingtool
项目摘要
A key computation that all mammals perform is determining the value of different outcomes. People and
animal models evaluate outcomes as gains or losses relative to an internal reference point, likely
reflecting their experience-based expectations. For example, if someone is told they will receive a
particular salary at a new job, but when they start, they find that the salary is substantially less, they will
view that salary (which is a net increase in wealth) as a loss relative to their reference point. Reference
dependence is a consequential, ubiquitous phenomenon, driving decisions about insurance, financial
products, labor, and retirement savings. The proposed work seeks to uncover how large populations of
neurons represent a cognitive variable –the reference point- during value-based decision-making. This
work involves complementary, synergistic interactions between experimentalists and theorists in the labs
of Dr. Christine Constantinople and Dr. Cristina Savin, respectively.
This proposal will develop a novel behavioral paradigm for studying reference dependence in rats,
enabling application of powerful tools to monitor large-scale neural dynamics. High-throughput behavioral
training will generate dozens of trained subjects for experiments in parallel. We will also develop a
behavioral model to quantify key aspects of rats' behavior, including individual differences in behavior
across animals (Aim 1). We will use new silicon probes with high channel counts (“Neuropixels” probes) to
record from populations of neurons in dozens of rats during behavior. Recordings will be obtained from
the orbitofrontal cortex (OFC), a key brain structure implicated in value-based decision-making. We will
develop novel latent dynamics models that will infer the reference point directly from populations of
simultaneously recorded neurons in OFC, without any knowledge of the task or rats' behavior. This model
will also be able to identify aspects of neural dynamics that are common across dozens of rats, and
aspects that are variable across animals, reflecting individual differences in behavior (Aim 2). Finally, we
will use complementary, state-of-the-art machine-learning techniques to train recurrent neural networks
(RNNs) on our behavioral and neural data. This approach will generate concrete hypotheses about the
neural circuit architectures performing reference-dependent subjective valuation in our task (Aim 3).
所有哺乳动物执行的一项关键计算是确定不同结果的价值。
动物模型将结果评估为相对于内部参考点的增益或损失,可能
反映他们基于经验的期望,例如,如果有人被告知他们将收到一个
新工作的薪水特别高,但是当他们开始工作时,发现薪水少了很多,他们会
将工资(即财富的净增加)视为相对于参考点的损失。
依赖是一种必然的、普遍存在的现象,推动有关保险、金融的决策
拟议的工作旨在揭示有多少人口。
神经元代表基于价值的决策过程中的认知变量——参考点。
工作涉及实验室中实验学家和理论学家之间互补、协同的互动
分别是克里斯蒂娜·君士坦丁堡博士和克里斯蒂娜·萨文博士。
该提案将开发一种新的行为范式来研究大鼠的参考依赖性,
能够应用强大的工具来监测大规模的神经动力学。
训练将产生数十个经过训练的受试者并行进行实验。
量化大鼠行为关键方面的行为模型,包括行为的个体差异
我们将使用具有高通道数的新型硅探针(“Neuropixels”探针)来进行跨动物研究。
从数十只老鼠的神经元群体的行为记录中获得记录。
眶额皮层(OFC),一个与基于价值的决策有关的关键大脑结构。
开发新颖的潜在动力学模型,该模型将直接从群体中推断出参考点
同时记录 OFC 中的神经元,而无需了解该模型的任务或行为。
还将能够识别数十只老鼠常见的神经动力学方面,并且
动物之间存在差异,反映了行为的个体差异(目标 2)。
将使用补充的、最先进的机器学习技术来训练循环神经网络
(RNN)对我们的行为和神经数据进行分析,这种方法将生成关于行为和神经数据的具体假设。
神经电路架构在我们的任务中执行依赖于参考的主观评估(目标 3)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recurrent Neural Circuits Overcome Partial Inactivation by Compensation and Re-learning.
循环神经回路通过补偿和重新学习克服部分失活。
- DOI:
- 发表时间:2024-04-17
- 期刊:
- 影响因子:0
- 作者:Bredenberg, Colin;Savin, Cristina;Kiani, Roozbeh
- 通讯作者:Kiani, Roozbeh
Subpopulations of neurons in lOFC encode previous and current rewards at time of choice.
lOFC 中的神经元亚群在选择时编码先前和当前的奖励。
- DOI:
- 发表时间:2021-10-25
- 期刊:
- 影响因子:7.7
- 作者:Hocker, David L;Brody, Carlos D;Savin, Cristina;Constantinople, Christine M
- 通讯作者:Constantinople, Christine M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Marie Constantinople其他文献
Christine Marie Constantinople的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Marie Constantinople', 18)}}的其他基金
Neural circuit mechanisms of arithmetic for economic decision-making
经济决策算法的神经回路机制
- 批准号:
10002804 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10261540 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10462618 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9816021 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9894590 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
10064970 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9224202 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9353881 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Role of microglial lysosomes in amyloid-A-beta degradation
小胶质细胞溶酶体在淀粉样蛋白-A-β降解中的作用
- 批准号:
10734289 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Novel Adipose Targeted Gene Therapy for Lipodystrophy
新型脂肪靶向基因疗法治疗脂肪营养不良
- 批准号:
10820263 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别: