The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
基本信息
- 批准号:10673866
- 负责人:
- 金额:$ 68.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAreaBioinformaticsBiologicalBiological AssayCalibrationCatalogsCellsClinicalCollaborationsCommunitiesComplexComputer softwareDataData AggregationData CommonsData SetDedicationsDiseaseElementsFundingGenesGeneticGenomicsGoalsHealthHumanKnowledgeKnowledge PortalManualsMapsMethodsMolecularNational Human Genome Research InstituteNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusOutputPathway interactionsPhenotypeResearchResearch DesignResearch PersonnelResourcesSourceSpecific qualifier valueTissuesTranslatingTrustVariantVisualWorkcausal variantdata accessdata integrationdata resourcedata sharingdata visualizationdesigndisorder riskepigenomicsfunctional genomicsgenetic associationgenetic variantgenome resourcegenome wide association studygenomic datagraph databasehuman diseaseimprovedinnovationinsightknowledge graphnew therapeutic targetprecision medicinestatisticstraittranscriptomicsweb based interfaceweb portal
项目摘要
Abstract
Genome wide association studies (GWAS) have produced associations between many thousands of
genetic variants and many hundreds of traits. The “functional effects” of most associations, however, have not
yet been elucidated – that is, the causal variants and effector genes responsible for them, and the tissues and
pathways through which they act, remain largely unknown. Over the past few years, three classes of genomic
data have arisen for inferring the functional effects of GWAS associations: summary association statistics
(effect sizes and p-values for associations between SNPs and traits), genomic annotations (assays of
regulatory activity and genomic functional elements), and bioinformatic methods (computationally predicted
functional effects). We argue that two gaps exist in the current resources that aggregate these data: first, no
current resource aims to comprehensively curate and catalog all that is known, and all data or methods that
could help predict, the functional effects of GWAS associations; second, existing resources are developed with
(at best) limited involvement from experts who either originally generated the genomic data and/or understand
how to best use them. We propose to address these gaps by building a new genomic community resource –
the Association to Function Knowledge Portal (A2FKP) – using a general software platform we initially
developed for type 2 diabetes. Our approach makes use of a key innovation to build a resource that is both
high quality and comprehensive: we collaborate with disease expert communities to build dedicated knowledge
portals for them, motivating them to contribute their data and expertise, and we then integrate these data
alongside those of other communities, providing users with access a comprehensive resource.
Specific aim 1 addresses gaps in the comprehensiveness and quality of the data aggregated by
current resources regarding the functional effects of GWAS associations. It will establish and manage
collaborations with a wide range of disease, data, and method experts, and then work with these communities
to identify, aggregate, and curate data for 11 classes of disease. Specific aim 2 addresses gaps in current
schemas and software platforms for the myriad types of data used for predicting the functional effects of
GWAS associations. It will build pipelines for processing genetic and genomic datasets through bioinformatic
methods for predicting the functional effects of GWAS associations, apply these pipelines to data aggregated
in Aim 1, and transform their outputs to relationships among entities in a knowledge graph. The goal of
specific aim 3 is to provide users with direct and visual access to the resources aggregated or computed in
Aims 1 and 2. It will develop REST APIs and web portals for querying and visualizing data within the A2FKP.
Significance: The project would produce a high quality and comprehensive genomic resource of data
and methods for predicting the functional effects of GWAS associations. Easy access to such a resource will
accelerate the pace by which GWAS associations can be translated to insights into complex disease.
抽象的
全基因组关联研究 (GWAS) 已在数千个基因之间建立了关联
然而,大多数关联的“功能效应”并没有发生。
尚未阐明——即导致它们的因果变异和效应基因,以及组织和
在过去的几年里,三类基因组的作用途径仍然很大程度上未知。
用于推断 GWAS 关联功能效果的数据已经出现:关联统计汇总
(SNP 和性状之间关联的效应大小和 p 值)、基因组注释(
调节活性和基因组功能元件)和生物信息学方法(计算预测
我们认为,当前汇总这些数据的资源存在两个差距:第一,没有。
当前资源旨在全面整理和编目所有已知信息以及所有数据或方法
可以帮助预测 GWAS 协会的功能效果;其次,现有资源的开发
(最多)最初生成基因组数据和/或理解的专家的参与有限
我们建议通过建立新的基因组社区资源来解决这些差距 -
功能知识门户协会 (A2FKP) – 使用我们最初使用的通用软件平台
我们的方法利用一项关键创新来构建一种兼具两者的资源。
高质量和全面:我们与疾病专家社区合作建立专门的知识
为他们提供门户,激励他们贡献自己的数据和专业知识,然后我们整合这些数据
与其他社区的社区一起,为用户提供全面的资源。
具体目标 1 解决由以下机构汇总的数据在全面性和质量方面的差距
它将建立和管理有关 GWAS 协会功能影响的现有资源。
与广泛的疾病、数据和方法专家合作,然后与这些社区合作
具体目标 2 旨在识别、汇总和整理 11 类疾病的数据,以解决当前的差距。
用于预测功能效果的各种数据的模式和软件平台
GWAS 协会将建立通过生物信息学处理遗传和基因组数据集的管道。
预测 GWAS 关联功能影响的方法,将这些管道应用于聚合数据
目标 1 中,将其输出转换为知识图中实体之间的关系。
具体目标 3 是为用户提供对聚合或计算的资源的直接和可视化访问
目标 1 和 2。它将开发 REST API 和门户网站,用于查询和可视化 A2FKP 内的数据。
意义:该项目将产生高质量和全面的基因组数据资源
以及预测 GWAS 关联的功能效果的方法将轻松访问此类资源。
加快 GWAS 关联转化为对复杂疾病的洞察的步伐。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Musculoskeletal Knowledge Portal: improving access to multi-omics data.
肌肉骨骼知识门户:改善对多组学数据的访问。
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Westendorf, Jennifer J;Bonewald, Lynda F;Kiel, Douglas P;Burtt, Noël P
- 通讯作者:Burtt, Noël P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noel P Burtt其他文献
Noel P Burtt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noel P Burtt', 18)}}的其他基金
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 68.46万 - 项目类别:
The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
- 批准号:
10090265 - 财政年份:2021
- 资助金额:
$ 68.46万 - 项目类别:
The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
- 批准号:
10090265 - 财政年份:2021
- 资助金额:
$ 68.46万 - 项目类别:
The next iteration of the AMP-T2D Knowledge Portal
AMP-T2D 知识门户的下一个迭代
- 批准号:
10839598 - 财政年份:2015
- 资助金额:
$ 68.46万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 68.46万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 68.46万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 68.46万 - 项目类别:
Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
- 批准号:
10648553 - 财政年份:2023
- 资助金额:
$ 68.46万 - 项目类别: