De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
基本信息
- 批准号:10672446
- 负责人:
- 金额:$ 70.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVACE2AcuteAcute Respiratory Distress SyndromeAerosolsAffinityAnimalsAnti-Inflammatory AgentsAntibodiesAntiviral AgentsAvidityBindingBinding ProteinsBinding SitesCOVID-19COVID-19 mortalityCOVID-19 pandemicCOVID-19 therapeuticsCOVID-19 treatmentCapillary Leak SyndromeCellsComputing MethodologiesCoupledCytokine ReceptorsDevelopmentDiseaseDisease OutbreaksDrug CompoundingDrug KineticsEndothelial CellsEpithelial CellsEscherichia coliGeneticGlycoproteinsGoalsHigh Performance ComputingHumanIL1R1 geneInfectionInflammatoryInflammatory ResponseInfluenza HemagglutininInterleukin 2 ReceptorInterleukin-1 betaInterleukin-2Interleukin-6InterleukinsIntravenousK-18 conjugateLeadLifeMesocricetus auratusMethodsMissionModelingMonoclonal AntibodiesMusNebulizerOrgan failureOutcomePeptidesPharmaceutical PreparationsPhase I Clinical TrialsProtein EngineeringProteinsProtocols documentationPublic HealthResearchRodent ModelRouteSARS-CoV-2 infectionSARS-CoV-2 spike proteinSafetySepsisSignal TransductionSocial BehaviorSpecificitySystemTestingTherapeuticUnited States National Institutes of HealthViralViral PhysiologyVirusVirus DiseasesWorkantagonistanti-viral efficacyclinical developmentcostcytokinecytokine release syndromedesigndisabilityeconomic behavioreconomic impactefficacy evaluationemerging pathogenfuture pandemicimmunogenicityimprovedin vivoinhibitorinnovationmanufacturemimeticsneglectnovelnovel coronavirusnovel therapeuticspandemic diseaseparallel computerpathogenpathogen genomepreclinical developmentprophylacticpublic health prioritiesrational designreceptorreceptor bindingsmall moleculesubcutaneoustherapeutic proteintherapeutically effectivevaccine development
项目摘要
PROJECT SUMMARY
One of the most pressing public health priorities for the COVID-19 pandemic is the development of an effective
and inexpensive therapeutic. The long-term goal of this proposal is to develop such COVID-19 treatments, as
well as the methods needed to rapidly create such molecules as soon as any new pathogen is identified. The
central hypothesis is that computational design can be used to quickly create proteins with potent antiviral activity
and others that suppress “cytokine storms” associated with advanced infection. Such countermeasures, if rapidly
developed and deployed, could save millions of lives during an outbreak until vaccines are developed. The
specific aims are to: 1) overcome current limitations in the discovery and development of protein therapeutics by
creating methods for the de novo design of hyper-stable miniproteins that bind tightly to vulnerable binding sites
on the SARS-CoV-2 Spike glycoprotein, including the receptor binding domain (RBD) of the ACE-2 cellular
receptor and the fusion peptide region; 2) Enhance the avidity of such anti-Spike minibinders through genetic
fusion of multiple copies, or through rational design of higher-order oligomers to create drug compounds that are
less prone to viral mutagenic escape; 3) Apply the same minibinder design pipeline to create cytokine receptor
antagonists of key cytokines IL-6 and IL-1β likely involved in acute respiratory distress syndrome (ADRS)
associated with COVID-19 mortality; 4) Assess the efficacy of antiviral and anti-interleukin minibinders by several
routes of delivery (intravenous, intranasal and subcutaneous) in rodent models of COVID-19 and assess
immunogenicity in order to identify those designs best suited for further preclinical development. As proof of
principle, the first anti-Spike minibinders have already been designed, were found to bind to SARS-CoV-2 Spike
RBD, and were found to neutralize live virus with activities rivaling the most potent known antibodies. This
proposal is innovative because it seeks to apply powerful emerging methods in the computational design of new
protein therapeutics to the COVID-19 pandemic. The proposal is significant because it would be the first example
of computational protein design yielding potent and entirely de novo antiviral and anti-inflammatory therapeutics
for an active pandemic. Ultimately, rapid minibinder design methods have the potential to generate treatments
for future pandemics, as well as for many other common and neglected diseases and conditions.
项目概要
COVID-19 大流行最紧迫的公共卫生优先事项之一是制定有效的
该提案的长期目标是开发此类 COVID-19 治疗方法,例如
以及一旦发现任何新病原体就快速创建此类分子所需的方法。
中心假设是计算设计可用于快速创建具有有效抗病毒活性的蛋白质
以及其他抑制与晚期感染相关的“细胞因子风暴”的措施,如果迅速的话。
在疫苗开发出来之前,疫苗的开发和部署可以在疫情爆发期间挽救数百万人的生命。
具体目标是:1)克服目前治疗性蛋白质发现和开发的局限性
创建从头设计超稳定微型蛋白的方法,这些微型蛋白与脆弱的结合位点紧密结合
SARS-CoV-2 Spike 糖蛋白,包括 ACE-2 细胞的受体结合域 (RBD)
受体和融合肽区域;2)通过遗传增强此类抗Spike微型结合剂的亲合力
多个拷贝的融合,或通过合理设计高阶寡聚物来创建药物化合物
3) 应用相同的minibinder设计流程来创建细胞因子受体
可能与急性呼吸窘迫综合征 (ADRS) 相关的关键细胞因子 IL-6 和 IL-1β 的拮抗剂
与 COVID-19 死亡率相关;4) 评估多种抗病毒药物和抗白细胞介素微型结合剂的功效
COVID-19 啮齿动物模型中的给药途径(静脉内、鼻内和皮下)并评估
免疫原性,以确定最适合进一步临床前开发的设计。
原则上,第一个抗 Spike 微型结合剂已经设计出来,被发现可以与 SARS-CoV-2 Spike 结合
RBD,被发现可以中和活病毒,其活性可与最有效的已知抗体相媲美。
该提案具有创新性,因为它寻求在新的计算设计中应用强大的新兴方法
该提案意义重大,因为这将是第一个例子。
计算蛋白质设计产生有效且完全从头的抗病毒和抗炎疗法
最终,快速微型粘合剂设计方法有可能产生治疗方法。
预防未来的流行病,以及许多其他常见和被忽视的疾病和状况。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein.
人类冠状病毒 CCoV-HuPn-2018 刺突糖蛋白的结构、受体识别和抗原性。
- DOI:
- 发表时间:2022-06-23
- 期刊:
- 影响因子:64.5
- 作者:Tortorici, M Alejandra;Walls, Alexandra C;Joshi, Anshu;Park, Young;Eguia, Rachel T;Miranda, Marcos C;Kepl, Elizabeth;Dosey, Annie;Stevens;Boeckh, Michael J;Telenti, Amalio;Lanzavecchia, Antonio;King, Neil P;Corti, Davide;Blo
- 通讯作者:Blo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID BAKER其他文献
DAVID BAKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID BAKER', 18)}}的其他基金
De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
- 批准号:
10460648 - 财政年份:2021
- 资助金额:
$ 70.38万 - 项目类别:
De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
- 批准号:
10296596 - 财政年份:2021
- 资助金额:
$ 70.38万 - 项目类别:
Project 4: Novel reagent development to enable molecular characterization
项目 4:开发新型试剂以实现分子表征
- 批准号:
10573273 - 财政年份:2020
- 资助金额:
$ 70.38万 - 项目类别:
Project 4: Novel reagent development to enable molecular characterization
项目 4:开发新型试剂以实现分子表征
- 批准号:
10359195 - 财政年份:2020
- 资助金额:
$ 70.38万 - 项目类别:
Design of de novo interleukin mimics for targeted immunotherapy
用于靶向免疫治疗的从头白细胞介素模拟物的设计
- 批准号:
9796930 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10200639 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10614470 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10400878 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
Design of de novo interleukin mimics for targeted immunotherapy
用于靶向免疫治疗的从头白细胞介素模拟物的设计
- 批准号:
10475003 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
9796948 - 财政年份:2019
- 资助金额:
$ 70.38万 - 项目类别:
相似国自然基金
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 70.38万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 70.38万 - 项目类别:
Chitin and chitinases in SARS-CoV-2 infection
SARS-CoV-2 感染中的几丁质和几丁质酶
- 批准号:
10742004 - 财政年份:2023
- 资助金额:
$ 70.38万 - 项目类别:
Investigating the role and therapeutic potential of the alpha5beta1 integrin in risk factors for COVID-19-associated cognitive impairment
研究 α5β1 整合素在 COVID-19 相关认知障碍危险因素中的作用和治疗潜力
- 批准号:
10658178 - 财政年份:2023
- 资助金额:
$ 70.38万 - 项目类别: