Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
基本信息
- 批准号:10696100
- 负责人:
- 金额:$ 338.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccelerationAddressAffectAlgorithmsAlzheimer disease detectionAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAlzheimer&aposs disease therapeuticAlzheimer’s disease biomarkerAmyloidAmyloid beta-ProteinArtificial IntelligenceBig Data MethodsBiologicalBiological MarkersCerebrovascular DisordersClinicalClinical TrialsCognitionCognitiveCollectionCommunitiesDataData AnalysesData CollectionData SetData SourcesDatabasesDedicationsDimensionsDiseaseDisease ProgressionDrug IndustryDrug TargetingEarly DiagnosisEducational workshopFrequenciesGenesGeneticGenetic DiseasesGenomeGenomicsGenotypeGoalsImageImpaired cognitionInformaticsInternationalLeadershipLinkMachine LearningMathematicsMethodsModalityMolecularMultimodal ImagingNerve DegenerationNetwork-basedNeurobiologyParticipantPatternPharmaceutical PreparationsPhenotypePositioning AttributePredictive ValueResearchResearch PersonnelResearch PriorityRiskRoleSamplingScoring MethodSourceSpeedStatistical MethodsStructureSubgroupSystems AnalysisTestingTrainingUnited States National Institutes of HealthVariantWorkanalytical methodanalytical toolartificial intelligence algorithmartificial intelligence methodbiobankclinical subtypescloud basedcognitive performancecognitive systemcognitive testingdata curationdata disseminationdata fusiondata harmonizationdata integrationdeep learningdemographicsdesigndisorder subtypedrug developmentdrug discoverydrug repurposingempowermentendophenotypeexperiencegenetic analysisgenetic signaturegenetic variantgenome sequencinggenome wide association studygenomic datagenomic predictorshazardhigh throughput analysisimaging biomarkerimaging geneticsimprovedindexinginformatics toolinterestlarge scale datamachine learning methodneurobiological mechanismneuroimagingneuroimaging markerneuropathologynew therapeutic targetnext generation sequencingnovelpersonalized genomicspersonalized medicinephenotypic datapre-clinicalpredictive markerpredictive modelingpreventresponserisk predictionspecific biomarkerstau Proteinstooltranslational impactwhole genome
项目摘要
ABSTRACT
In response to PAR-19-269 “Cognitive Systems Analysis of Alzheimer's Disease Genetic and Phenotypic Data
(U01 Clinical Trial Not Allowed)”, our project unites experts in AD genomics, machine learning and AI (including
deep learning), large-scale data integration, and international data harmonization to work in a carefully-designed
Consortium Structure in close partnership with the NIH, ADSP, and NIAGADS. We will develop a suite of
complementary big data analytic approaches for ultra-scale analysis of Alzheimer’s Disease (AD) genomic
and phenotypic data. The vast data volumes now generated by the Alzheimer’s Disease Sequencing Project
(ADSP), National Alzheimer’s Coordinating Center (NACC), Alzheimer’s Disease Neuroimaging Initiative (ADNI),
Accelerating Medications Partnership AD (AMP-AD), and UK Biobank (UKBB), far exceed the capacity of all
current analytic methods, which have not kept pace with the scale and speed of data collection. This vast amount
of genetic and phenotypic data mandates new and more powerful algorithms to: (1) store, manage, and
manipulate whole-genome sequences and associated data on an ever-growing scale; (2) discover novel AD risk
and protective loci by merging informatics and AD genomics databases; (3) relate whole-genome changes to
the ATN(v) biomarkers that now define biological AD. Our Ultrascale Machine Learning Initiative, or “ULTRA”
- will offer new AI and deep learning tools to discover features in massive scale genomics data - relating whole
genome data to biomarker features by merging all relevant data sources. Our team of experienced PIs will
coordinate efforts across the U.S. to create these large-scale data analytic tools. Our MPI team and 6 Core
Leads have decades of experience working together and with the AD community in pioneering machine learning
methods for AD genetics and neuroimaging, including leadership of international neuroimaging consortia across
the world. Dedicated Cores focus on Genomic, Imaging, and Cognitive Data Harmonization. Curated data will
then be efficiently imported into AI approaches and informatics pipelines that will allow the AD research
community to leverage ultra-scale, multidimensional genomic and phenotypic data from the ADSP, NACC, ADNI,
AMP-AD, and others. Our work is organized by a carefully-designed and coordinated Consortium guided by all
stake-holders, clinical leaders, and pioneering analysts in AD genomics and neuroimaging. Our ultrascale AI
tools will advance AD genomics research and will include efforts in training, and a dedicated Drug Repurposing
Core. This team effort will accelerate understanding of the genetic, molecular and neurobiological mechanisms
of AD, yielding significant translational impact on disease and drug development.
抽象的
响应 PAR-19-269“阿尔茨海默病遗传和表型数据的认知系统分析”
(U01 临床试验不允许)”,我们的项目联合了 AD 基因组学、机器学习和人工智能领域的专家(包括
深度学习)、大规模数据集成和国际数据协调,以精心设计的方式工作
我们将与 NIH、ADSP 和 NIAGADS 密切合作,开发一套联盟结构。
用于阿尔茨海默病 (AD) 基因组超大规模分析的补充大数据分析方法
和表型数据现在由阿尔茨海默病测序项目产生。
(ADSP)、国家阿尔茨海默病协调中心 (NACC)、阿尔茨海默病神经影像倡议 (ADNI)、
加速药物合作伙伴 AD (AMP-AD) 和英国生物银行 (UKBB) 远远超出了所有机构的容量
当前的分析方法未能跟上如此大量的数据收集的规模和速度。
遗传和表型数据的增长需要新的、更强大的算法来:(1)存储、管理和
以不断扩大的规模操纵全基因组序列和相关数据(2)发现新的 AD 风险;
通过合并信息学和 AD 基因组数据库来确定保护位点 (3) 将全基因组变化与
现在定义生物 AD 的 ATN(v) 生物标志物。
- 将提供新的人工智能和深度学习工具来发现大规模基因组学数据中的特征 - 相关整体
我们经验丰富的 PI 团队将通过合并所有相关数据源,将基因组数据转化为生物标记特征。
协调美国各地的努力来创建这些大规模数据分析工具。我们的 MPI 团队和 6 个核心。
领导者拥有数十年与 AD 社区一起开拓机器学习的经验
AD 遗传学和神经影像学方法,包括国际神经影像学联盟的领导地位
专用核心专注于基因组、成像和认知数据协调。
然后有效地导入人工智能方法和信息学管道中,从而进行 AD 研究
社区利用来自 ADSP、NACC、ADNI 的超大规模、多维基因组和表型数据,
我们的工作是由精心设计和协调的联盟组织的,并由所有人指导。
AD 基因组学和神经影像领域的利益相关者、临床领导者和先驱分析师。
工具将推进 AD 基因组学研究,并将包括培训工作和专门的药物再利用
核心。该团队的努力将加速对遗传、分子和神经生物学机制的理解。
AD 的研究,对疾病和药物开发产生重大转化影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 338.97万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 338.97万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 338.97万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 338.97万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 338.97万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 338.97万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 338.97万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10530196 - 财政年份:2017
- 资助金额:
$ 338.97万 - 项目类别:
Heterogeneity of Multi-modal Imaging Signatures of Aging, MCI, Alzheimer's disease via Pattern Analysis
通过模式分析研究衰老、MCI、阿尔茨海默病的多模态成像特征的异质性
- 批准号:
9211062 - 财政年份:2017
- 资助金额:
$ 338.97万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Supplement: Enhancing Community Contributions to Bioconductor With Build System Containerization and a GPU for Testing
补充:通过构建系统容器化和用于测试的 GPU 增强社区对 Bioconductor 的贡献
- 批准号:
10838736 - 财政年份:2023
- 资助金额:
$ 338.97万 - 项目类别:
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 338.97万 - 项目类别:
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 338.97万 - 项目类别:
Accelerating URiA Independent Research Potential in Nutrition Sciences
加速 URiA 在营养科学方面的独立研究潜力
- 批准号:
10746637 - 财政年份:2023
- 资助金额:
$ 338.97万 - 项目类别: