PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators

创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施

基本信息

项目摘要

Posttraumatic stress disorder (PTSD) is a common, chronic, and debilitating psychiatric condition in Veterans. Beyond psychiatric features, PTSD has been linked multiple physical health conditions due to poorer health behaviors and dysregulation of biological processes such as immune dysregulation and chronic inflammation. Prior evidence has indicated an association between PTSD and risk for autoimmune (AI) conditions, a group of over 80 complex diseases involving self-reactive immune responses. However, research linking PTSD and AI disease risk has largely focused on only a few prevalent AI conditions, has not estimated potential causal relationships, has been in European mostly White samples, and has not examined risk or mitigating factors. Causal methods, such as marginal structural modeling, can account for time-varying factors in observational data to better estimate causal links between factors, providing more precise inferences than prior associational studies. Additionally, research is needed to determine associations between PTSD and all AI diseases, which are largely heterogeneous but share underlying etiology. Indeed, determining links between PTSD and certain forms of AI dysregulation may point to patterns of immune processes that underlie disease risk. Given higher rates of PTSD and some AI diseases in racial or ethnic minority groups, it is necessary to explore potential health disparities in associations between PTSD and AI disease. Moreover, other important risk or protective factors influencing AI disease risk in PTSD can be examined empirically by utilizing a large clinical sample and testing multiple predictors in a machine learning context. Relatedly, no studies have determined whether treatment for PTSD, such as antidepressants or evidence-based psychotherapy, may mitigate AI disease risk among individuals with PTSD. This study is designed to respond to these gaps in the literature by estimating causal associations between PTSD and AI disease in a large, diverse sample of US Veterans. The first aim is to estimate the causal impact of PTSD on AI disease risk (e.g., any AI disease, individual AI conditions) and examining the effect of psychiatric comorbidity (e.g., multiple psychiatric diagnoses) on AI disease. The second aim is to determine whether race and ethnicity modify the association between PTSD and AI disease and to use data-driven methods to explore clinical factors that increase or mitigate risk for AI disease in those with PTSD. The third aim is to investigate whether receiving treatment (e.g., antidepressant medications, psychotherapy) for PTSD attenuates risk for AI disease compared to those with PTSD not receiving treatment. For all aims, data from national VA electronic health records (EHR) of approximately 9 million Veterans will be accessed and analyzed to identify diagnoses of PTSD, AI disease, and relevant covariates across time. We will apply marginal structural models, machine learning algorithms for feature selection, and logistic regression with propensity score matching to address the aims. Aligned with the research aims, the training aims will support my development as an independent researcher, including to develop: 1) knowledge of clinical PTSD pathology and treatment; 2) expertise in psychoneuroimmunological processes in PTSD; 3) understanding of AI disorders and their etiology; and 4) proficiency in big data methods including implementing causal inference and machine learning in large-scale EHR data. My research and training aims will be supported by an excellent mentorship team of interdisciplinary researchers and will be conducted at the San Francisco Veterans Affairs Health Care System. This Career Development Award is the critical next step towards my overall scientific and career goals, which are to apply data science and epidemiology to VA data to understand relationships between trauma, PTSD, and physical disease in order to improve the health of Veterans with PTSD.
创伤后应激障碍(PTSD)是退伍军人中一种常见的、慢性的、使人衰弱的精神疾病。 除了精神特征之外,创伤后应激障碍还与由于健康状况不佳而导致的多种身体健康状况有关 生物过程的行为和失调,例如免疫失调和慢性炎症。 先前的证据表明 PTSD 与自身免疫 (AI) 疾病的风险之间存在关联,一组 超过 80 种涉及自身反应性免疫反应的复杂疾病。然而,将 PTSD 和人工智能联系起来的研究 疾病风险主要集中在少数流行的人工智能状况上,尚未估计潜在的因果关系 关系,已在欧洲大多数白人样本中进行,并且尚未检查风险或缓解因素。 因果方法,例如边际结构模型,可以解释观察中的时变因素 数据可以更好地估计因素之间的因果关系,提供比先前关联更精确的推论 研究。此外,还需要进行研究来确定 PTSD 与所有 AI 疾病之间的关联,这 很大程度上是异质的,但具有共同的潜在病因。事实上,确定 PTSD 和某些特定疾病之间的联系 人工智能失调的形式可能表明疾病风险背后的免疫过程模式。给予更高 少数族裔群体中 PTSD 和某些 AI 疾病的发病率,有必要探索潜在的 创伤后应激障碍(PTSD)和人工智能疾病之间的健康差异。此外,其他重要的风险或保护 影响 PTSD 中 AI 疾病风险的因素可以通过利用大量临床样本进行实证检验, 在机器学习环境中测试多个预测变量。相关地,没有研究确定是否 PTSD 的治疗,例如抗抑郁药或循证心理治疗,可能会降低 AI 疾病的风险 患有创伤后应激障碍 (PTSD) 的个体。本研究旨在通过估计来回应文献中的这些空白 在大量不同的美国退伍军人样本中,PTSD 与 AI 疾病之间存在因果关系。第一个目标是 评估 PTSD 对 AI 疾病风险(例如任何 AI 疾病、个体 AI 状况)的因果影响,以及 检查精神共病(例如多种精神疾病诊断)对 AI 疾病的影响。第二个 目的是确定种族和民族是否会改变 PTSD 与 AI 疾病之间的关联,并 使用数据驱动的方法来探索增加或减轻患有 AI 疾病的风险的临床因素 创伤后应激障碍。第三个目标是调查是否接受治疗(例如抗抑郁药物、 与未接受治疗的 PTSD 患者相比,针对 PTSD 的心理治疗可降低 AI 疾病的风险。 为了实现所有目标,大约 900 万退伍军人的国家 VA 电子健康记录 (EHR) 数据将被 访问和分析以识别 PTSD、AI 疾病和随时间变化的相关协变量的诊断。我们 将应用边际结构模型、用于特征选择的机器学习算法和逻辑回归 通过倾向得分匹配来实现目标。与研究目标相一致,培训目标将 支持我作为独立研究人员的发展,包括发展:1)临床 PTSD 的知识 病理学和治疗; 2) 创伤后应激障碍(PTSD)心理神经免疫过程的专业知识; 3)了解 人工智能疾病及其病因; 4)熟练掌握大数据方法,包括实施因果推理 以及大规模 EHR 数据中的机器学习。我的研究和培训目标将得到优秀的支持 由跨学科研究人员组成的导师团队将在旧金山退伍军人事务部进行 医疗保健系统。这个职业发展奖是我迈向整体科学和技术的关键的下一步 职业目标,即将数据科学和流行病学应用于 VA 数据以理解关系 创伤、创伤后应激障碍 (PTSD) 和身体疾病之间的关系,以改善患有创伤后应激障碍 (PTSD) 退伍军人的健康。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Association of psychiatric disorders with clinical diagnosis of long COVID in US veterans.
美国退伍军人精神疾病与长期新冠肺炎临床诊断的关联。
  • DOI:
  • 发表时间:
    2024-02-05
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Nishimi, Kristen;Neylan, Thomas C;Bertenthal, Daniel;Seal, Karen H;O'Donovan, Aoife
  • 通讯作者:
    O'Donovan, Aoife
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristen Marie Nishimi其他文献

Kristen Marie Nishimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
  • 批准号:
    10831206
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Class II Human Leukocyte Antigen biologics for antibody-mediated graft rejection.
用于抗体介导的移植物排斥反应的 II 类人类白细胞抗原生物制剂。
  • 批准号:
    10598931
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Individualized Immunosuppression for Kidney Transplant Recipients
肾移植受者的个体化免疫抑制
  • 批准号:
    10664609
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Maturation of human humoral immunity through repeat malaria challenges
通过重复疟疾挑战使人体体液免疫成熟
  • 批准号:
    10720245
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
  • 批准号:
    10404415
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了