Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
基本信息
- 批准号:10669029
- 负责人:
- 金额:$ 45.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAwarenessBayesian NetworkBenchmarkingBenefits and RisksBig DataBig Data MethodsBiological MarkersCase StudyCharacteristicsClinicalClinical Decision Support SystemsComplexComputer AssistedComputer softwareComputersDataData ReportingData ScientistData SetDatabasesDecision MakingDecision Support SystemsDevelopmentDiseaseDoseDose FractionationElectronicsEnvironmentGenomicsGoalsGraphHostageHumanInfrastructureInstitutionIntelligenceInvestigationKnowledgeLearningLiverLungMachine LearningMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of lungMedicalMethodsModelingModernizationNatureNormal tissue morphologyOncologyOutcomePatient PreferencesPatientsPerformancePhysiciansPlayPrediction of Response to TherapyProceduresProteomicsPsychological reinforcementQuality of lifeRadiation Dose UnitRadiation therapyReaction TimeRegimenRegretsRewardsRiskRoleScheduleSiteSoftware ToolsSourceSystemTechniquesTestingTimeToxic effectTreatment ProtocolsUncertaintyWorkcancer radiation therapyclinical centerclinical decision supportclinical practiceclinical research sitecomputer human interactiondeep learningdeep reinforcement learningdemographicsexperiencefractionated radiationheuristicshigh rewardhigh riskimage guidedimaging biomarkerimprovedindividual patientirradiationknowledge baselearning strategymachine learning algorithmmachine learning frameworkmachine learning methodmultidisciplinaryneoplastic celloutcome predictionpersonalized decisionpersonalized medicinepoint of care testingpopulation basedpredicting responsepredictive markerprofiles in patientsprototyperadiation riskradiomicsrapid growthresponseside effectsocioeconomicssuccesssupervised learningsupport toolstherapy outcometooltreatment choicetreatment durationtreatment optimizationtreatment responsetumortumor eradicationusabilityuser-friendly
项目摘要
The complex environment of modern radiation therapy (RT) comprises data from a rich combination of patient-
specific information including: demographics, physical characteristics of high-energy dose, features subsequent
to repeated application of image-guidance (radiomics), and biological markers (genomics, proteomics, etc.),
generated before and/or over a treatment period that can span few days to several weeks. Rapid growth of these
available and untapped “pan-Omics” data, invites ample opportunities for Big data analytics to deliver on the
promise of personalized medicine in RT. This particularly true in promising but high-risk RT procedures such as
stereotactic body RT (SBRT), which have witnessed tremendous expansion due to clinical successes in early
disease stages and socio-economic benefits of shortened high dose treatments. This has led to the desire to
exploit these treatments into more advanced stages of cancer, however, the unknown risks associated with
increased toxicities hamper its potential. Therefore, robust clinical decision support systems (CDSSs) capable
of exploring the complex pan-Omics interaction landscape with the goal of exploiting known principles of
treatment response before and during the course of fractionated RT are urgently needed. The long-term goal of
this project is to overcome barriers related to prediction uncertainties and human-computer interactions, which
are currently limiting the ability to make personalized clinical decisions for real-time response-based adaptation
in radiotherapy from available data. To meet this need and overcome current challenges, we have assembled a
multidisciplinary team including: clinicians, medical physicists, data scientists, and human factor experts.
Specifically, we will develop and quantitively evaluate: (1) graph-based supervised machine learning algorithms
for robust prediction outcomes before and during RT; (2) deep reinforcement learning to dynamically optimize
treatment adaptation; and (3) a user-centered software prototype for RT decision support, with the broader goal
of building a comprehensive real-time framework for outcome modeling and response-based adaption in RT. We
hypothesize that the use of advanced machine learning techniques and user-centered tools will unlock the
potentials to move from current population-based approaches limited by subjective experiences and heuristic
rules into robust, patient-specific, user-friendly CDSSs. This approach and its corresponding software tool will
be tested within two clinical RT sites of lung and liver cancers, to demonstrate its versatility and highlight pertinent
human-computer factors and cancer specific issues.
Impact statement: Patient-specific big data are now available before and/or during RT courses, offering new
and untapped opportunities for personalized treatment. This study will overcome current shortcomings of
population-based approaches and data underuse in current RT practice by investigating and developing an
intelligent, computer-aided, user-centered, personalized CDSS and test its performance in rewarding but high-
risk RT scenarios. The approach is also applicable to other modern cancer regimens.
现代放射治疗 (RT) 的复杂环境包含来自患者的丰富组合的数据
具体信息包括:人口统计、高能剂量的身体特征、后续特征
重复应用图像引导(放射组学)和生物标记(基因组学、蛋白质组学等),
在治疗期间之前和/或期间产生,可能持续几天到几周。
可用且未开发的“泛组学”数据为大数据分析带来了充足的机会来实现
在 RT 中个性化医疗的前景尤其如此,这在有前途但高风险的 RT 手术中尤其如此。
立体定向体放疗(SBRT),由于早期的临床成功而得到了巨大的扩展
疾病阶段和缩短高剂量治疗的社会经济效益引起了人们的渴望。
利用这些治疗方法治疗更晚期的癌症,然而,与这些治疗相关的未知风险
增加的毒性阻碍了其潜力,因此强大的临床决策支持系统(CDSS)的能力。
探索复杂的泛组学相互作用景观,目标是利用已知的原理
分割放疗之前和期间的治疗反应是迫切需要的长期目标。
该项目旨在克服与预测不确定性和人机交互相关的障碍,
目前正在限制为基于实时响应的适应做出个性化临床决策的能力
为了满足这一需求并克服当前的挑战,我们汇集了现有的放射治疗数据。
多学科团队包括:超级明星、医学物理学家、数据科学家和人为因素专家。
具体来说,我们将开发并定量评估:(1)基于图的监督机器学习算法
在 RT 之前和期间获得稳健的预测结果 (2) 深度强化学习来动态优化;
治疗适应;(3) 以用户为中心的 RT 决策支持软件原型,具有更广泛的目标
为 RT 中的结果建模和基于响应的适应构建全面的实时框架。
开创性地使用先进的机器学习技术和以用户为中心的工具将解锁
摆脱当前受主观经验和启发式限制的基于人群的方法的潜力
这种方法及其相应的软件工具将把规则纳入稳健的、针对患者的、用户友好的 CDSS 中。
在肺癌和肝癌的两个临床 RT 部位进行测试,以证明其多功能性并突出相关性
人机因素和癌症具体问题。
影响陈述:患者特定的大数据现在可以在 RT 课程之前和/或期间使用,提供新的
这项研究将克服目前的缺点。
通过调查和开发基于人群的方法和当前 RT 实践中未充分利用的数据
智能的、计算机辅助的、以用户为中心的、个性化的CDSS,并在有回报但高回报的方面测试其性能
该方法也适用于其他现代癌症治疗方案。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling non-genetic information dynamics in cells using reservoir computing.
使用储库计算对细胞中的非遗传信息动态进行建模。
- DOI:
- 发表时间:2024-04-19
- 期刊:
- 影响因子:5.8
- 作者:Niraula, Dipesh;El Naqa, Issam;Tuszynski, Jack Adam;Gatenby, Robert A
- 通讯作者:Gatenby, Robert A
Current status of Radiomics for cancer management: Challenges versus opportunities for clinical practice.
癌症管理放射组学的现状:临床实践的挑战与机遇。
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Li, Hua;El Naqa, Issam;Rong, Yi
- 通讯作者:Rong, Yi
Radiation Fractionation Schedules Published During the COVID-19 Pandemic: A Systematic Review of the Quality of Evidence and Recommendations for Future Development.
COVID-19 大流行期间发布的放射分割时间表:对证据质量的系统审查和未来发展的建议。
- DOI:
- 发表时间:2020-10-01
- 期刊:
- 影响因子:0
- 作者:Thomson, David J;Yom, Sue S;Saeed, Hina;El Naqa, Issam;Ballas, Leslie;Bentzen, Soren M;Chao, Samuel T;Choudhury, Ananya;Coles, Charlotte E;Dover, Laura;Guadagnolo, B Ashleigh;Guckenberger, Matthias;Hoskin, Peter;Jabbour, Salma K;Katz, Matthe
- 通讯作者:Katz, Matthe
Introduction to special issue on datasets hosted in The Cancer Imaging Archive (TCIA).
介绍癌症影像档案馆 (TCIA) 托管的数据集特刊。
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:3.8
- 作者:Kirby, Justin;Prior, Fred;Petrick, Nicholas;Hadjiski, Lubomir;Farahani, Keyvan;Drukker, Karen;Kalpathy;Glide;El Naqa, Issam
- 通讯作者:El Naqa, Issam
Stereotactic Radiosurgery for Vestibular Schwannomas: Tumor Control Probability Analyses and Recommended Reporting Standards.
前庭神经鞘瘤的立体定向放射外科:肿瘤控制概率分析和推荐的报告标准。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Soltys, Scott G;Milano, Michael T;Xue, Jinyu;Tomé, Wolfgang A;Yorke, Ellen;Sheehan, Jason;Ding, George X;Kirkpatrick, John P;Ma, Lijun;Sahgal, Arjun;Solberg, Timothy;Adler, John;Grimm, Jimm;El Naqa, Issam
- 通讯作者:El Naqa, Issam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10470308 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10470308 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10261532 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
相似国自然基金
基于机器学习的意识下恐惧/愉快情绪认知脑网络研究
- 批准号:32300854
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经夹带的意识障碍个体化TMS调控及脑动力学机制研究
- 批准号:82371184
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NMDAR1介导的突触易化参与rTMS在促进颅脑损伤后意识恢复中疗效个体差异的机制研究
- 批准号:82302845
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
情境意识驱动的跨平台知识交流行为及其价值共创研究
- 批准号:72374159
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别: