Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
基本信息
- 批准号:10669008
- 负责人:
- 金额:$ 31.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAffectAgeAlgorithmsBayesian AnalysisBayesian MethodBayesian ModelingBehavioralBig DataBiologicalBrainBrain imagingCationsChildChild HealthChildhoodClinicalClinical ResearchComplexComputational algorithmComputer softwareDataData AnalysesDependenceDevelopmentDisciplineElectronic Health RecordEnvironmental Risk FactorEtiologyFrequenciesFunctional Magnetic Resonance ImagingFundingGoalsHigh Performance ComputingHumanHuman GenomeImageIndividualInterventionJointsKnowledgeLongitudinal StudiesMagnetic Resonance ImagingMapsMeasurementMediatingMediationMedicineMethodsModelingModernizationModificationMultimodal ImagingNeural Network SimulationNeurosciencesOutcomePathologyPatternPerformanceProcessPsychologyPsychopathologyResearchRestRiskRouteSample SizeSeminalSmokingSportsStatistical Data InterpretationStatistical MethodsStructureSubstance Use DisorderTechnologyTranslational ResearchUnited StatesUnited States National Institutes of HealthVideo GamesWorkYouthaddictioncluster computingcognitive developmentcomputerized toolsexperiencefeature selectionhigh dimensionalityhigh resolution imaginghigh riskimaging biomarkerimaging modalityinnovationneural networkneuroimagingnovelparallel computerprecision medicinepredict clinical outcomepredictive modelingrisk predictionscreeningsleep patternsocialsocial factorssocial mediasubstance usetooltranslational applicationsuser friendly softwarevectorweb based softwareweb pageyoung adult
项目摘要
ABSTRACT!
This proposal will address the most timely and important issues in statistical analysis of big imaging data. Our
project is motivated by "The Adolescent Brain Cognitive Development (ABCD) Study”, which is the largest
long-term study of brain development and child health in the United States and is funded by the National
Institutes of Health (NIH). Innovative aspects of this proposal are: 1) We develop a new Bayesian image-on-
vector regression model with novel sparse and smooth Gaussian process priors. It enables to perform
association analysis between high-resolution images of brain activity and high-dimensional vectors of social
environmental factors and clinical variables. To the best of our knowledge no existing methods can efficiently
and jointly analyze high-resolution images and high-dimensional vectors of covariates simultaneously under a
systematic modeling framework; 2) We develop a new Bayesian scalar-on-image neural network model with
sparse, smooth, and spatially-varying coefficients. This new model has great potential to make better
predictions about the risk of an adolescent initiating substance use compared to all existing methods; and more
importantly, it will identify important imaging biomarkers that are associated with substance use patterns. This
will provide a better understanding of the pathology of substance use initiation; 3) We propose a Bayesian
model for high-dimensional mediation analysis of multimodality imaging data by combining image-on-vector
regression and scalar-on-image regression with modifications. Under the potential outcome framework, !
we will define the direct effects of environmental factors/electronic health records on psychopathology, as well
as their indirect effects that are mediated through the changes in brain functions and/or structures. 4) We
develop scalable posterior computation algorithms for all of the proposed models. These efficient computation
tools will enable the possibility to apply the statistical methods in the clinical and translational research and
applications. Our methods can address two key questions about adolescent brain cognitive development: 1)
they will identify important childhood experiences and social environmental factors, such as sports, video
games, social media, unhealthy sleep patterns, and smoking, that affect brain development; 2) understand the
inferences of brain development on the risk of substance use initiation and patterns, including detailed quantity,
frequency, route of administration, and co-use patterns. !
!
抽象的!
该提案将解决我们的大成像数据统计分析中最及时、最重要的问题。
该项目的动机是“青少年大脑认知发展(ABCD)研究”,这是迄今为止规模最大的研究
在美国对大脑发育和儿童健康进行长期研究,并由国家资助
该提案的创新之处在于: 1)我们开发了一种新的贝叶斯图像-
具有新颖的稀疏且平滑的高斯过程先验的向量回归模型能够执行。
大脑活动的高分辨率图像与社交的高维向量之间的关联分析
据我们所知,没有现有的方法可以有效地确定环境因素和临床变量。
并在a下同时联合分析高分辨率图像和协变量的高维向量
系统建模框架;2)我们开发了一种新的贝叶斯图像标量神经网络模型
这种新模型具有改善稀疏、平滑和空间变化系数的巨大潜力。
与所有现有方法相比,对青少年开始使用药物的风险进行预测;
重要的是,它将识别与物质使用模式相关的重要成像生物标志物。
将提供对物质使用起始病理学的更好理解;3)我们提出贝叶斯模型;
结合图像矢量的多模态成像数据高维中介分析模型
在潜在结果框架下,回归和图像标量回归。
我们还将定义环境因素/电子健康记录对精神病理学的直接影响
作为通过大脑功能和/或结构的变化介导的间接影响 4) 我们。
为所有提出的模型开发可扩展的后验计算算法。
工具将使统计方法在临床和转化研究中应用成为可能
我们的方法可以解决有关青少年大脑认知发展的两个关键问题:1)
他们将识别重要的童年经历和社会环境因素,例如运动、视频
影响大脑发育的游戏、社交媒体、不健康的睡眠模式和吸烟 2) 了解
大脑发育对物质使用开始风险和模式的推论,包括详细数量,
频率、给药途径和共同使用模式。!
!
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian functional analysis for untargeted metabolomics data with matching uncertainty and small sample sizes.
对具有匹配不确定性和小样本量的非目标代谢组学数据进行贝叶斯函数分析。
- DOI:
- 发表时间:2024-03-27
- 期刊:
- 影响因子:9.5
- 作者:Ma, Guoxuan;Kang, Jian;Yu, Tianwei
- 通讯作者:Yu, Tianwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
Evaluation of lung MDCT nodule annotation across radiologists and methods.
放射科医生和方法对肺 MDCT 结节注释的评估。
- DOI:
10.1016/j.acra.2006.07.012 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:4.8
- 作者:
C. R. Meyer;Timothy D Johnson;Geoffrey Mclennan;Denise Aberle;Ella A. Kazerooni;H. MacMahon;B. Mul - 通讯作者:
B. Mul
Neoadjuvant chemotherapy for high-grade serous ovarian cancer: radiologic-pathologic correlation of response assessment and predictors of progression.
高级别浆液性卵巢癌的新辅助化疗:反应评估和进展预测因素的放射学病理相关性。
- DOI:
10.1007/s00261-024-04215-w - 发表时间:
2024-03-13 - 期刊:
- 影响因子:2.4
- 作者:
Molly E. Rosel;Tianwen Ma;K. Shampain;Erica B. Stein;A. Wasnik;N. Curci;A. Sciallis;S. Uppal;Timothy D Johnson;K. Maturen - 通讯作者:
K. Maturen
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 31.78万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10269912 - 财政年份:2020
- 资助金额:
$ 31.78万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 31.78万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9149238 - 财政年份:2015
- 资助金额:
$ 31.78万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 31.78万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8296951 - 财政年份:2012
- 资助金额:
$ 31.78万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 31.78万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 31.78万 - 项目类别:
相似国自然基金
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基因与同伴环境对青少年冒险行为的调控及其神经机制
- 批准号:31800938
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
家庭关系对青少年网络游戏成瘾的影响:行为与认知神经机制
- 批准号:31800937
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
青春期甲基苯丙胺暴露对小鼠脑发育的影响以及作用机制研究
- 批准号:81772034
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
青春期可卡因滥用对成年时前额皮质内侧部锥体神经元功能的影响:GABA能突触传递的调控机制研究
- 批准号:81571303
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 31.78万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 31.78万 - 项目类别:
Early Life Stress Induced Mechanisms of Cardiovascular Disease Risk and Resilience
生命早期压力诱发心血管疾病风险和恢复力的机制
- 批准号:
10555121 - 财政年份:2023
- 资助金额:
$ 31.78万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 31.78万 - 项目类别: