Cellular Control:Synthetic Signaling/Motility (RMI)
细胞控制:合成信号/运动 (RMI)
基本信息
- 批准号:7498981
- 负责人:
- 金额:$ 461万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2010-09-29
- 项目状态:已结题
- 来源:
- 关键词:AcidsActinsAdoptedAreaBackBacteriaBehaviorBindingBiologic CharacteristicBiologicalBiological AssayBiological ProcessBiologyBiomedical EngineeringBreathingCalculiCardiovascular systemCell ShapeCell physiologyCellsChemotactic FactorsChemotaxisClassCompatibleComplementComplexComputer SimulationComputersCytoplasmCytoskeletonDevelopmentDevicesDisciplineElectrical EngineeringElectronicsElementsEndocrineEndocytosisEngineeringEscherichia coliEukaryotic CellEventEvolutionExcisionFeedbackFigs - dietaryFoundationsGenerationsGenomicsGlossaryGoalsGuanosine Triphosphate PhosphohydrolasesHandHealthcareHormonalImmuneImmune responseImmune systemIn VitroIndividualInvasiveKnock-outKnowledgeLeadLesionLifeLigandsLinkLipidsListeriaListeria monocytogenesLocalizedLocationLogicMeasuresMechanicsMediatingMedicalMembraneMetabolicMethodsMicroscopicModelingMolecularMovementMutationMyosin ATPaseNatural regenerationNeoplasm MetastasisNerveNeuronsNumbersOrganellesOrganismOutcomeOutputPatientsPatternPhagocytosisPhilosophyPhosphoric Monoester HydrolasesPhosphotransferasesPlayPolymersPrincipal InvestigatorProcessPropertyProteinsProteomicsQuantum DotsRangeReagentRegulationResearch InfrastructureRoleSalmonellaScientistShapesShigellaSignal TransductionSignaling MoleculeSolutionsSpecific qualifier valueStandards of Weights and MeasuresStructureSystemSystems BiologyTailTechnologyTertiary Protein StructureTestingTherapeuticTimeTransistorsVisionWorkWound Healingaxon guidancebasebiological researchcell behaviorcell motilitycellular engineeringcomputerized data processingdesigndriving forceexperiencein vivoinformation gatheringinsightinterestmacromoleculemembermicrobialmolecular assembly/self assemblymotor controlnanocrystalnanodevicenanomaterialsnanomedicinenanoparticlenanoscalenanosystemsneoplastic cellneutrophilparticlepathogenpolymerizationprecursor cellprogramsreceptorrepairedresponserhorho GTP-Binding Proteinsself assemblyself organizationsensorsynthetic biologytumortumor growth
项目摘要
Our long term goal is to be able to engineer cells or cell-like molecular assemblies that perform "smart" therapeutic functions: tasks such as tissue repair or "search and deliver" actions to treat microscopic tumors or cardiovascular lesions. The ability to precisely engineer cell-based therapeutics would have revolutionary effects on healthcare. Our ability to engineer cells, however, is extremely primitive; achieving this vision will require an understanding of the design principles underlying biological regulatory systems, as well as establishment of a standardized, modular framework of molecular components that can be used to rapidly and reliably fabricate diverse control circuits and assemblies. Once established, such a framework could be used to generate a wide range of cellular behaviors. The goal of our Center is to establish a framework for engineering eukaryotic cells. We have chosen to initially focus on one testbed system: actin-based cell movement. Motility is a complex process driven by molecular self-organization. It
is essential during development, wound healing, immune response, and many other processes. The ability to control the movement and targeting of cells would have many therapeutic applications. To lay the foundation for facile engineering of nanoscale motility systems we will develop three technology platforms: 1) a molecular toolkit of modular parts and devices, 2) quantitative assays for analysis of cell polarization, force generation, and movement, and 3) a theoretical frame-work for design of motility circuits. We will develop and refine these platforms by using them to solve four target engineering Grand Challenges: a) Replace or rewire the guidance system in a motile cell. b) Reprogram a non-motile cell to display directed movement.
c) Build alternative force generating systems from non-actin polymers and/or nanoparticle assemblies. d) Build cell-like assemblies capable of induced shape change and/or movement.
Members of the Center will be organized into integrated, interdisciplinary, interlab teams centered around each of these Grand Challenges. We expect three outcomes. First, cycles of design/fabrication/analysis will help uncover the basic design principles of cell motility circuits. Second, each of these increasingly difficult challenges is a stepping stone on the path toward the engineering of therapeutic cells. Third, the technologies and basic design principles that emerge by tackling these challenges can then be applied to the engineering of many other complex biological processes driven by dynamic self-organization.
我们的长期目标是能够设计执行“智能”治疗功能的细胞或类似细胞的分子组件:诸如组织修复或“搜索并提供”操作以治疗微观肿瘤或心血管病变。精确设计基于细胞的治疗的能力将对医疗保健产生革命性的影响。但是,我们设计细胞的能力极为原始。实现这一愿景将需要了解生物调节系统的设计原理,并建立一个标准化的分子组件模块化框架,这些框架可用于快速且可靠地构建各种控制电路和组件。建立后,可以使用这样的框架来产生广泛的细胞行为。我们中心的目的是为工程真核细胞建立一个框架。我们选择最初专注于一个测试床系统:基于肌动蛋白的细胞运动。运动性是由分子自组织驱动的复杂过程。它
在发育,伤口愈合,免疫反应和许多其他过程中至关重要。控制细胞运动和靶向的能力将具有许多治疗应用。为了奠定纳米级运动系统的便利工程基础,我们将开发三个技术平台:1)模块化零件和设备的分子工具包,2)用于分析细胞极化,力产生和运动的定量测定,以及3)一个理论框架工作,用于设计运动通道。我们将通过使用它们解决四个目标工程挑战来开发和完善这些平台:a)替换或重新连接运动单元中的指导系统。 b)重新编程非运动单元以显示有向运动。
c)从非肌动蛋白聚合物和/或纳米颗粒组件中构建替代力生成系统。 d)构建能够诱导形状变化和/或运动的细胞状组件。
该中心的成员将被组织成综合的,跨学科的Interlab团队,围绕这些巨大的挑战。我们期望三个结果。首先,设计/制造/分析的周期将有助于揭示细胞运动电路的基本设计原理。其次,这些日益困难的挑战中的每一个都是在通往治疗细胞工程的路径上的垫脚石。第三,通过应对这些挑战而出现的技术和基本设计原理可以应用于由动态自我组织驱动的许多其他复杂生物学过程的工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENDELL A LIM其他文献
WENDELL A LIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENDELL A LIM', 18)}}的其他基金
Engineering synthetic immune cells with modular sentinel and therapeutic functions for T1D
工程合成免疫细胞具有模块化前哨和 T1D 治疗功能
- 批准号:
10594512 - 财政年份:2022
- 资助金额:
$ 461万 - 项目类别:
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
- 批准号:
10657356 - 财政年份:2022
- 资助金额:
$ 461万 - 项目类别:
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
- 批准号:
10362126 - 财政年份:2022
- 资助金额:
$ 461万 - 项目类别:
Engineering synthetic immune cells with modular sentinel and therapeutic functions for T1D
工程合成免疫细胞具有模块化前哨和 T1D 治疗功能
- 批准号:
10436126 - 财政年份:2022
- 资助金额:
$ 461万 - 项目类别:
Recognizing the tumor ecosystem: Integrating stromal and cancer antigen signals to achieve precision recognition of solid tumors by CAR T cells
识别肿瘤生态系统:整合基质信号和癌抗原信号,实现CAR T细胞对实体瘤的精准识别
- 批准号:
10094815 - 财政年份:2020
- 资助金额:
$ 461万 - 项目类别:
Recognizing the tumor ecosystem: Integrating stromal and cancer antigen signals to achieve precision recognition of solid tumors by CAR T cells
识别肿瘤生态系统:整合基质信号和癌抗原信号,实现CAR T细胞对实体瘤的精准识别
- 批准号:
10559489 - 财政年份:2020
- 资助金额:
$ 461万 - 项目类别:
Recognizing the tumor ecosystem: Integrating stromal and cancer antigen signals to achieve precision recognition of solid tumors by CAR T cells
识别肿瘤生态系统:整合基质信号和癌抗原信号,实现CAR T细胞对实体瘤的精准识别
- 批准号:
10310406 - 财政年份:2020
- 资助金额:
$ 461万 - 项目类别:
Engineering synthetic helper cells that autonomously deliver orthogonal IL-2 to selectively promote therapeutic T cell proliferation in tumors
工程合成辅助细胞可自主递送正交 IL-2 以选择性促进肿瘤中治疗性 T 细胞增殖
- 批准号:
10285941 - 财政年份:2019
- 资助金额:
$ 461万 - 项目类别:
UCSF Center for Synthetic Immunology: Tools to Reprogram the Immune System to Combat Cancer
加州大学旧金山分校合成免疫学中心:重新编程免疫系统以对抗癌症的工具
- 批准号:
10598367 - 财政年份:2019
- 资助金额:
$ 461万 - 项目类别:
UCSF Center for Synthetic Immunology: Tools to Reprogram the Immune System to Combat Cancer
加州大学旧金山分校合成免疫学中心:重新编程免疫系统以对抗癌症的工具
- 批准号:
10598362 - 财政年份:2019
- 资助金额:
$ 461万 - 项目类别:
相似海外基金
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
- 批准号:
10337038 - 财政年份:2021
- 资助金额:
$ 461万 - 项目类别:
Nanofabricated Devices and Nanomedicine Approaches for Wound Healing
用于伤口愈合的纳米制造设备和纳米医学方法
- 批准号:
10437884 - 财政年份:2021
- 资助金额:
$ 461万 - 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
- 批准号:
10521300 - 财政年份:2021
- 资助金额:
$ 461万 - 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
- 批准号:
10533420 - 财政年份:2021
- 资助金额:
$ 461万 - 项目类别:
Nanofabricated Devices and Nanomedicine Approaches for Wound Healing
用于伤口愈合的纳米制造设备和纳米医学方法
- 批准号:
10888600 - 财政年份:2021
- 资助金额:
$ 461万 - 项目类别: