Use of Deep Learning Algorithms to Enable Evaluation of the Determinants and Outcomes of Hepatic Steatosis, by HIV Status
使用深度学习算法根据 HIV 状态评估肝脂肪变性的决定因素和结果
基本信息
- 批准号:10548504
- 负责人:
- 金额:$ 16.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-09 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingAlcohol abuseAlcohol consumptionAlgorithmsArtificial IntelligenceBioinformaticsBiometryCD4 Lymphocyte CountCardiovascular systemCaringCellsCirrhosisClinicalCohort StudiesComputed Tomography ScannersComputer AssistedComputerized Medical RecordDataDevelopmentDiabetes MellitusDiagnosisDyslipidemiasElectronic Health RecordEpidemiologyEvaluationFatty LiverFibrinogenFutureGeneral PopulationHIVHIV InfectionsHIV riskHepaticHepatocyteHepatologyHypertensionImageInformaticsInterventionKnowledgeLiverLiver diseasesMagnetic Resonance ImagingManualsMeasurementMediatingMedicineMentorsMentorshipMetabolic dysfunctionMethodologyMethodsMorbidity - disease rateObesityOutcomeOutcome StudyPathway interactionsPatientsPersonsPopulationPrimary carcinoma of the liver cellsProspective cohort studyResearchResearch PersonnelResourcesRiskRisk FactorsSample SizeSamplingScanningScienceSelection BiasSelection for TreatmentsSeveritiesSurrogate MarkersTimeTrainingTriglyceridesUnited StatesVeteransVeterans Health AdministrationViralViral hepatitisViremiaWorkX-Ray Computed Tomographyabdominal CTantiretroviral therapybaseclinical careco-infectioncohortdeep learningdeep learning algorithmelastographyfollow-upinterestlarge datasetsliver biopsyliver inflammationliver transplantationmortalitymultidisciplinarynovelobesogenicpreventpreventive interventionradiological imagingradiologistrepositoryscreeningtool
项目摘要
Hepatic steatosis, defined by >5% hepatocyte triglyceride content, may be potentiated in people with HIV
(PWH) through viral-mediated mechanisms or metabolic dysfunction associated with antiretroviral therapy
(ART). However, the epidemiology of hepatic steatosis remains unclear among PWH, primarily because
studies have been limited to small patient samples that ascertained steatosis via specialized radiographic
methods or liver biopsy. Since liver disease is a leading cause of morbidity and mortality among PWH, it is
critically important to identify the determinants and consequences of hepatic steatosis in this group. Such
studies will inform interventions and management strategies to mitigate HIV-specific steatosis mechanisms and
its consequences, particularly hepatic decompensation and hepatocellular carcinoma (HCC).
Recent advances in artificial intelligence have facilitated the development of automated computer-aided liver
assessment to determine the presence and severity of hepatic steatosis within noncontrast abdominal
computed tomography (CT) scans. The 8utomatic ,!:iver 8ttenuation Region-Of-Interest-based Measurement
(ALARM) is a deep learning tool previously developed for the identification of moderate-to-severe hepatic
steatosis. Preliminary studies conducted by the applicant demonstrate the high accuracy of ALARM compared
to manual radiologist review across multiple centers and CT scanners, including within the Veterans Health
Administration. To address the knowledge gaps of existing studies, this proposal will first establish a cohort of
over 40,000 PWH and people without HIV (PWOH) in the Veterans Aging Cohort Study (VACS) who
underwent noncontrast abdominal CT imaging for any indication in the context of clinical care between 2002-
2020. The VACS, an ongoing national prospective cohort study of PWH and PWOH across the United States,
includes access to electronic health record data, including image files of CT scans. The ALARM tool will be
applied to this repository of radiographic images to objectively classify the presence or absence of moderateto-
severe hepatic steatosis. The research plan aims to: 1) identify the HIV-specific determinants associated
with hepatic steatosis among PWH, 2) define how traditional determinants of steatosis differ by HIV status, and
3) determine the risk of liver complications associated with steatosis in PWH and how this risk differs by HIV
status. The findings from these studies will inform interventions to prevent and mitigate the development of
hepatic steatosis among persons with HIV, which will help lower the risk of liver complications and prolong
survival in this population. This project will bring together a mentoring team of nationally recognized
researchers and provide time for coursework and training in advanced epidemiology, biostatistics, informatics,
artificial intelligence, hepatology, and HIV medicine that are needed to establish the applicant as an
independent investigator in the field of HIV-related liver diseases.
肝脂肪变性(肝细胞甘油三酯含量>5%)在 HIV 感染者中可能会加剧
(PWH) 通过病毒介导的机制或与抗逆转录病毒治疗相关的代谢功能障碍
(艺术)。然而,PWH 中肝脂肪变性的流行病学仍不清楚,主要是因为
研究仅限于通过专门的放射线照相确定脂肪变性的小患者样本
方法或肝活检。由于肝病是感染者发病和死亡的主要原因,因此
确定该组肝脂肪变性的决定因素和后果至关重要。这样的
研究将为干预措施和管理策略提供信息,以减轻艾滋病毒特异性脂肪变性机制和
其后果,特别是肝功能失代偿和肝细胞癌(HCC)。
人工智能的最新进展促进了自动化计算机辅助肝脏的发展
评估以确定非造影腹部肝脏脂肪变性的存在及其严重程度
计算机断层扫描 (CT) 扫描。 8utomatic ,!:iver 8tenuation 基于感兴趣区域的测量
(ALARM)是之前开发的一种深度学习工具,用于识别中度至重度肝病
脂肪变性。申请人进行的初步研究表明,相比之下,ALARM 具有较高的准确性。
跨多个中心和 CT 扫描仪进行手动放射科医生审查,包括退伍军人健康中心
行政。为了解决现有研究的知识差距,该提案将首先建立一个队列
退伍军人老龄化队列研究 (VACS) 中超过 40,000 名 PWH 和未感染 HIV 的人 (PWOH)
2002 年至
2020.VACS 是一项正在进行的全美 PWH 和 PWOH 全国前瞻性队列研究,
包括访问电子健康记录数据,包括 CT 扫描的图像文件。警报工具将是
应用于此放射线图像存储库,以客观地对是否存在中度到-
严重的肝脂肪变性。该研究计划的目的是: 1) 确定与 HIV 相关的特定决定因素
感染者中的肝脂肪变性,2) 定义脂肪变性的传统决定因素如何因 HIV 状况而异,以及
3) 确定 PWH 中与脂肪变性相关的肝脏并发症的风险,以及该风险因 HIV 有何不同
地位。这些研究的结果将为预防和减轻疾病发展的干预措施提供信息
HIV 感染者的肝脂肪变性,这将有助于降低肝脏并发症的风险并延长肝脂肪变性的时间
在这个人群中生存。该项目将汇集一支由国家认可的导师团队
研究人员并提供时间进行高级流行病学、生物统计学、信息学、
使申请人成为一名医生所需的人工智能、肝病学和艾滋病毒医学
HIV相关肝脏疾病领域的独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessie Torgersen其他文献
Jessie Torgersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessie Torgersen', 18)}}的其他基金
Use of Deep Learning Algorithms to Enable Evaluation of the Determinants and Outcomes of Hepatic Steatosis, by HIV Status
使用深度学习算法根据 HIV 状态评估肝脂肪变性的决定因素和结果
- 批准号:
10677782 - 财政年份:2022
- 资助金额:
$ 16.79万 - 项目类别:
相似国自然基金
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
- 批准号:22376195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
- 批准号:22303065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 16.79万 - 项目类别:
The Gut-Liver Axis in HIV-Related Non-Alcoholic Fatty Liver Disease
HIV 相关非酒精性脂肪肝中的肠肝轴
- 批准号:
10762284 - 财政年份:2023
- 资助金额:
$ 16.79万 - 项目类别:
Understanding the aging process in hematopoietic stem cells by alcohol-induced DNA damage
了解酒精诱导的 DNA 损伤造血干细胞的衰老过程
- 批准号:
10811164 - 财政年份:2023
- 资助金额:
$ 16.79万 - 项目类别:
Alcohol Center Of Research -- Nebraska (ACORN)
内布拉斯加州酒精研究中心 (ACORN)
- 批准号:
10526252 - 财政年份:2023
- 资助金额:
$ 16.79万 - 项目类别:
Understanding alcohol use and alcohol-related care among older adults with heart failure
了解患有心力衰竭的老年人的饮酒情况和酒精相关护理
- 批准号:
10723567 - 财政年份:2023
- 资助金额:
$ 16.79万 - 项目类别: