Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
基本信息
- 批准号:10546186
- 负责人:
- 金额:$ 177.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentBenchmarkingBindingBinding SitesBiological ProcessCharacteristicsChemicalsComplementCrystallizationDataDetergentsDiseaseDropsDrug DesignEngineeringEnsureGoalsHealth BenefitHumanHybridsHydrophobicityIslandKnowledge acquisitionLegal patentLocationMembrane ProteinsMethodsModificationMolecular ConformationNational Institute of Drug AbuseOutcomePeripheralPharmaceutical PreparationsPharmacologic SubstancePhaseProductivityProteinsProteomePublic HealthReproducibilityResearch PersonnelResolutionScienceSignal TransductionSolubilitySourceStructureSubstance Use DisorderSuccinate dehydrogenase (ubiquinone)SurfaceSynchrotronsSystems DevelopmentTechnologyTemperatureTimeUnited States National Institutes of HealthUniversitiesX ray diffraction analysisbasecommercial applicationdrug developmentflexibilityhigh throughput screeninghydrophilicityimprovedinnovationmonolayerprototypepublic health researchquinol fumarate reductaseresponsescreeningstructural biologysurfactantsynchrotron radiationtechnological innovationtherapeutic target
项目摘要
PROJECT SUMMARY
DeNovX creates innovative platform products that improve the crystallization of proteins and pharmaceuticals.
Of the ≈ 4700 human membrane proteins potentially involved in drug responses, ≈ 94% have yet to be
structurally characterized owing to difficulties in crystallization. The goal of Phase II is to adapt DeNovX’s
surface science agnostic approach to improving crystallization for use with membrane proteins to advance the
structure-based understanding of substance use disorders (SUDs) to benefit Public Health. DeNovX improves
crystallization using tunable substrates based on chemical interactions from bifunctional self-assembled
monolayers (SAMs); surface energy modifications from engineered nucleation features (ENFs); and a hybrid
strategy using chemically and energy modified ENFs (CENFs). A high confidence POC was achieved using the
membrane proteins quinol:fumarate reductase (QFR) and succinate:quinone oxidoreductase (SQR). Diffraction
quality QFR crystals were formed on a bifunctional SAM while no crystals formed on controls, and select ENFs
produced up to a 19-fold increase in QFR crystals vs. controls. The hypothesis is that bifunctional SAMs,
ENFs, or hybrid CENFs interacting with a membrane protein or its detergent envelope can facilitate
preorganization and crystal nucleation from supersaturated solutions. Specific Aim 1 - Conduct controlled,
replicate (n ≥ 6) studies of membrane protein crystallization outcomes using β-prototype bifunctional SAMs,
ENFs, and CENFs to identify those characteristics most favorably impacting crystal nucleation of the QFR and
SQR benchmark membrane proteins provided by Co-I Iverson under a subaward to Vanderbilt. These rigorous
and quantitative crystallization studies will be complemented with synchrotron X-ray diffraction to ensure
resolution that supports binding and conformational analyses through a subaward to Co-I Cohen at Stanford’s
Synchrotron Radiation Lightsource (SSRL). Specific Aim 2 - Incorporate surface characteristics most favorably
impacting membrane protein crystallization into bifunctional SAM, ENF, and CENFs on ≥ 12 𝛾-prototype
24/96/384 well HTS crystallization plates. Optimize for crystallization in detergent containing systems and
advance development of the top six nucleation surfaces showing reproducible (n ≥ 6) crystallization
improvements of ≥ 15% increase in hits, ≥ 20% reduction in onset times, or ≥ 25% increase in the quantity of
crystals generated vs. controls. Specific Aim 3 - Incorporating SUD relevant target guidance from NIH and
domain experts with a tractability assessment by the Co-Is, expand crystallization screening with optimized
nucleation surfaces to ≥ 8 membrane proteins of varying class that would most benefit from near atomic
resolution structural data. Generate crystals for ≥ 2 targets for study at SSRL. Specific Aim 4 - Demonstrate the
tangible benefits and deploy the surface science product suite for membrane protein crystallization screening
with pharmaceutical company, NIH, and academic researchers to facilitate therapeutic target identification for
SUDs. DeNovX will sell its patented high throughput crystallization plates in a $450M-650M market.
项目概要
DeNovX 创造了可改善蛋白质和药物结晶的创新平台产品。
在大约 4700 种可能参与药物反应的人类膜蛋白中,大约 94% 尚未得到证实
由于结晶困难而在结构上进行了表征 第二阶段的目标是适应 DeNovX 的。
与表面科学无关的方法来改善结晶,与膜蛋白一起使用,以促进
改善对物质使用障碍 (SUD) 的基于结构的理解,以造福公共健康。
使用基于双功能自组装化学相互作用的可调基质进行结晶
单层(SAM);工程成核特征(ENF)和混合层的表面能修饰;
使用化学和能量修饰的 ENF (CENF) 策略使用高置信度的 POC 来实现。
膜蛋白喹啉:富马酸还原酶(QFR)和琥珀酸:醌氧化还原酶(SQR)。
在双功能 SAM 上形成优质 QFR 晶体,而在对照上没有形成晶体,并选择 ENF
与对照相比,QFR 晶体的产量增加了 19 倍。假设双功能 SAM,
ENF 或混合 CENF 与膜蛋白或其去污剂包膜相互作用可以促进
过饱和溶液的预组织和晶体成核具体目标 1 - 行为受控,
使用 β 原型双功能 SAM 重复 (n ≥ 6) 膜蛋白结晶结果研究,
ENF 和 CENF 来识别那些最有利于影响 QFR 和晶体成核的特征
SQR 基准膜蛋白由 Co-I Iverson 在范德比尔特大学的资助下提供。
同步加速器 X 射线衍射将补充定量结晶研究,以确保
通过向斯坦福大学的 Co-I Cohen 提供子奖项来支持结合和构象分析的决议
同步辐射光源 (SSRL)。具体目标 2 - 最有利地结合表面特性。
影响膜蛋白在 ≥ 12 𝛾 原型上结晶成双功能 SAM、ENF 和 CENF
24/96/384 孔 HTS 结晶板优化含有洗涤剂的系统和系统中的结晶。
先进的前六个成核表面显示出可重复的 (n ≥ 6) 结晶
命中率增加 ≥ 15%,起效时间减少 ≥ 20%,或数量增加 ≥ 25%
生成的晶体与对照的具体目标 3 - 纳入 NIH 和 SUD 的相关目标指导。
领域专家通过 Co-Is 进行易处理性评估,通过优化扩大结晶筛选
成核表面≥ 8个不同类别的膜蛋白,这些膜蛋白最受益于近原子
生成 ≥ 2 个目标的晶体以在 SSRL 进行研究 具体目标 4 - 演示
切实的好处并部署表面科学产品套件进行膜蛋白结晶筛选
与制药公司、NIH 和学术研究人员合作,促进治疗靶点的识别
DeNovX 将在 4.5 亿至 6.5 亿美元的市场上销售其专利高通量结晶板。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew H. Bond其他文献
Preconcentration of radium isotopes from natural waters using MnO2 Resin.
使用 MnO2 树脂预浓缩天然水中的镭同位素。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.6
- 作者:
D. Moon;William C. Burnett;Svetlana Nour;P. Horwitz;Andrew H. Bond - 通讯作者:
Andrew H. Bond
Flowsheet Feasibility Studies Using ABEC Resins for Removal of Pertechnetate from Nuclear Wastes
使用 ABEC 树脂去除核废料中高锝酸盐的流程可行性研究
- DOI:
10.1021/ie980611o - 发表时间:
1999-02-09 - 期刊:
- 影响因子:4.2
- 作者:
Andrew H. Bond;M. Gula;James T. Harvey;Jonathan M. Duffey;E. Philip Horwitz;S. Griffin;Robin D. Rogers;J. Collins - 通讯作者:
J. Collins
Novel Extraction of Chromatographic Resins Based on Tetraalkyldiglycolamides: Characterization and Potential Applications
基于四烷基二甘醇酰胺的色谱树脂的新型萃取:表征和潜在应用
- DOI:
10.1081/sei-200049898 - 发表时间:
2005-05-01 - 期刊:
- 影响因子:2
- 作者:
E. Horwitz;Daniel R. McAlister;Andrew H. Bond;R. Barrans - 通讯作者:
R. Barrans
Andrew H. Bond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew H. Bond', 18)}}的其他基金
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10707123 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Microfluidic Protein Flow Crystallization Using Engineered Nucleation Features for Serial and Traditional Crystallography
使用工程成核特征进行串行和传统晶体学的微流蛋白流结晶
- 批准号:
10323393 - 财政年份:2021
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10081479 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
9134557 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Nucleation Enhanced Crystallization of Pharmaceuticals in Continuous Flow Manufacturing to Mitigate Therapeutic Drug Shortages
在连续流程制造中成核增强药物结晶以缓解治疗药物短缺
- 批准号:
9137884 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10226342 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
9134557 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Microdomain Thermal Perturbations for Enhanced Nucleation of Proteins
微域热扰动增强蛋白质成核
- 批准号:
8833846 - 财政年份:2015
- 资助金额:
$ 177.56万 - 项目类别:
相似国自然基金
区域性农业干旱、强风、低温气象指数保险产品设计与应用研究
- 批准号:71173139
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
基于标杆管理的县级疾病预防控制机构绩效诊断与改进的关键技术研究
- 批准号:71003025
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
宏观分层虚拟标杆管理理论与方法创新研究
- 批准号:70963003
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
Sustained Biomaterial-mediated Inhibition of R-spondin 2 to Target Pathological Wnt Signaling in Post-Traumatic Osteoarthritis
生物材料介导的 R-spondin 2 持续抑制对创伤后骨关节炎中病理性 Wnt 信号传导的影响
- 批准号:
10704167 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10704135 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Sustained Biomaterial-mediated Inhibition of R-spondin 2 to Target Pathological Wnt Signaling in Post-Traumatic Osteoarthritis
生物材料介导的 R-spondin 2 持续抑制对创伤后骨关节炎中病理性 Wnt 信号传导的影响
- 批准号:
10704167 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10707123 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Sustained Biomaterial-mediated Inhibition of R-spondin 2 to Target Pathological Wnt Signaling in Post-Traumatic Osteoarthritis
生物材料介导的 R-spondin 2 持续抑制对创伤后骨关节炎中病理性 Wnt 信号传导的影响
- 批准号:
10518062 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别: