Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
基本信息
- 批准号:10663901
- 负责人:
- 金额:$ 34.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAwardBehaviorBiological AssayBiotechnologyCellsChemicalsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledDNADNA RepairDNA biosynthesisDiseaseDrug resistanceEpigenetic ProcessEventExperimental DesignsGeneticGenetic DiseasesGenetic MaterialsGenomeGenomicsGoalsHealthHumanHybridsLaboratoriesLesionLifeMalignant NeoplasmsMicrosatellite InstabilityMismatch RepairMolecularMutationNatureOligonucleotide ProbesOrganismOutcomePathogenicityPathway interactionsPlayProcessResearchRoleSeaSourceTechniquesToxic effectTreesViralacronymsantimicrobialenvironmental mutagensin vivoinnovationnext generationnovelnovel therapeuticspathogenrepairedtumor
项目摘要
All organisms strive to maintain genomic fidelity in the face of agents that can damage their genetic material
and the possibility that errors that can occur whenever their DNA is replicated. The ultimate goals of my
research are to understand (i) how the mechanism and high-level coordination of DNA repair processes are
governed by molecular, genetic, and epigenetic factors in vivo; (ii) how these factors affect diverse repair
processes in different contexts to affect human health; and (iii) how clinically-important modulators of DNA
repair activities and of repair-related toxicity can be leveraged as novel therapeutics. I have focused primarily
on DNA mismatch repair (MMR) pathways, the pathways responsible for correcting errors that occur during
DNA replication. As a primary mechanism of mutation avoidance in nearly all organisms, MMR plays a central
role in many diverse processes that affect human health, from the emergence of drug resistance in infectious
pathogens and cancers to the onset and treatment of somatic genetic diseases. We developed a novel assay
to deconstruct the biomolecular mechanisms of MMR that uses chemically-modified oligonucleotide probes to
insert targeted DNA `mismatches' directly into the genome of living cells. This assay, which we call by the
acronym `SPORE,' can thus be used to directly interrogate replication-coupled repair processes like MMR
quantitatively in a strand-, orientation-, and lesion-specific manner in vivo—something nearly impossible to
achieve otherwise. Using the SPORE assay as a uniquely powerful baseline of approach, and in combination
with next-generation biotechnologies like CRISPR and innovative experimental design, my laboratory will seek
to answer the following broad-spectrum and transdisciplinary questions: · How do different molecular, genetic,
and epigenetic factors affect the higher-order architecture (components and interactions), coordination,
dynamics of different MMR mechanisms? How do these factors affect repair-associated toxicities? Are different
molecular lesions recognized by MMR repaired according to different mechanisms and toxicities? · Do the
unique repair mechanisms in pathogenic organisms represent a novel source of antimicrobial targets? · How
do viral factors and environmental mutagens modulate MMR and MMR-related toxicities and by what
mechanism? What is their role in hypermutation and emergence of drug resistance? · What governs the
tradeoff between mutagenic and anti-mutagenic roles of MMR in microsatellite instability (MSI) diseases? ·
What occurs during collisions between DNA repair or other processes on DNA, and what is the nature and
origin of related catastrophic mutational events? These questions are each complex in their own right and have
remained difficult to answer using traditional techniques, but our unique hybrid approach provides a direct way
to address each of them. The likely outcomes during the R35 award will be numerous breakthroughs in our
understanding of mutational processes and how it can be manipulated in living cells; with a long-term impact
being a sea-change in the ability to probe and exploit DNA damage repair mechanisms to treat disease.
所有生物体在面对可能损害其遗传物质的物质时都努力维持基因组保真度
以及复制DNA时可能发生错误的可能性是我的最终目标。
研究目的是了解 (i) DNA 修复过程的机制和高级协调是如何进行的
受体内分子、遗传和表观遗传因素控制;(ii)这些因素如何影响不同的修复;
不同情况下的过程如何影响人类健康;以及 (iii) DNA 调节剂的临床重要性
修复活性和修复相关毒性可以作为我主要关注的新疗法。
DNA错配修复(MMR)途径,负责纠正DNA错配修复过程中发生的错误的途径
DNA 复制作为几乎所有生物体避免突变的主要机制,MMR 发挥着核心作用。
从传染病耐药性的出现开始,在影响人类健康的许多不同过程中发挥着作用
我们开发了一种新的检测方法来研究病原体和癌症对体细胞遗传疾病的发病和治疗的影响。
解构 MMR 的生物分子机制,使用化学修饰的寡核苷酸探针
将“错配”的目标 DNA 直接插入活细胞的基因组中,我们将其称为“错配”。
因此,首字母缩略词“SPORE”可用于直接询问复制耦合修复过程,如 MMR
在体内以链、方向和病变特异性方式定量——这几乎是不可能的
使用 SPORE 检测作为独特且强大的基线方法,并结合起来实现其他目标。
借助 CRISPR 等下一代生物技术和创新实验设计,我的实验室将寻求
回答以下广谱和跨学科问题: · 不同的分子、遗传、
表观遗传因素影响高阶结构(成分和相互作用)、协调、
不同 MMR 机制的动态如何不同?
MMR 识别的分子损伤根据不同的机制和毒性进行修复?
病原生物的独特修复机制代表了抗菌靶标的新来源?
病毒因素和环境诱变剂是否会调节 MMR 和 MMR 相关毒性?
它们在超突变和耐药性出现中的作用是什么?
MMR 在微卫星不稳定性 (MSI) 疾病中的诱变和抗诱变作用之间的权衡?
DNA 修复或 DNA 上的其他过程之间发生碰撞时会发生什么,其性质和性质是什么?
相关灾难性突变事件的起源?这些问题本身都很复杂,并且具有以下特点:
使用传统技术仍然很难回答,但我们独特的混合方法提供了一种直接的方法
R35 颁奖期间可能出现的结果将是我们的众多突破。
了解突变过程以及如何在活细胞中操纵它并产生长期影响;
探索和利用 DNA 损伤修复机制来治疗疾病的能力发生了翻天覆地的变化。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression.
“浮萍浸”:水生紫萍植物可以有效地从其环境中摄取溶解的、DNA 包裹的碳纳米管,用于瞬时基因表达。
- DOI:
- 发表时间:2023-08-22
- 期刊:
- 影响因子:0
- 作者:Islam, Tasmia;Kalkar, Swapna;Tinker;Ignatova, Tetyana;Josephs, Eric A
- 通讯作者:Josephs, Eric A
Digital data storage on DNA tape using CRISPR base editors.
使用 CRISPR 碱基编辑器将数字数据存储在 DNA 磁带上。
- DOI:
- 发表时间:2023-02-07
- 期刊:
- 影响因子:0
- 作者:Sadremomtaz, Afsaneh;Glass, Robert F;Guerrero, Jorge Eduardo;LaJeunesse, Dennis R;Josephs, Eric A;Zadegan, Reza
- 通讯作者:Zadegan, Reza
Digital data storage on DNA tape using CRISPR base editors.
使用 CRISPR 碱基编辑器将数字数据存储在 DNA 磁带上。
- DOI:
- 发表时间:2023-10-13
- 期刊:
- 影响因子:16.6
- 作者:Sadremomtaz, Afsaneh;Glass, Robert F;Guerrero, Jorge Eduardo;LaJeunesse, Dennis R;Josephs, Eric A;Zadegan, Reza
- 通讯作者:Zadegan, Reza
The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression.
“浮萍浸”:水生紫萍植物可以有效地从其环境中摄取溶解的、DNA 包裹的碳纳米管,用于瞬时基因表达。
- DOI:
- 发表时间:2024-02-16
- 期刊:
- 影响因子:4.7
- 作者:Islam, Tasmia;Kalkar, Swapna;Tinker;Ignatova, Tetyana;Josephs, Eric A
- 通讯作者:Josephs, Eric A
Selection of Extended CRISPR RNAs with Enhanced Targeting and Specificity.
选择具有增强靶向性和特异性的延伸 CRISPR RNA。
- DOI:
- 发表时间:2023-01-12
- 期刊:
- 影响因子:0
- 作者:Herring;Dimig, Hillary;Roesing, Miranda;Josephs, Eric A
- 通讯作者:Josephs, Eric A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alan Josephs其他文献
Eric Alan Josephs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Alan Josephs', 18)}}的其他基金
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10683334 - 财政年份:2022
- 资助金额:
$ 34.72万 - 项目类别:
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10511156 - 财政年份:2022
- 资助金额:
$ 34.72万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10455496 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10019571 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
9797176 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Mechanism and Architecture of EndoMS/NucS Mutation Avoidance in Mycobacteria
分枝杆菌 EndoMS/NucS 突变避免的机制和架构
- 批准号:
9809008 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10206198 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10581066 - 财政年份:2019
- 资助金额:
$ 34.72万 - 项目类别:
Forces and Long-Distance Coupling along DNA in the Mismatch Repair (MMR) Pathway
错配修复 (MMR) 途径中沿 DNA 的力和长距离耦合
- 批准号:
8783242 - 财政年份:2014
- 资助金额:
$ 34.72万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the prevalence and nature of facial recognition deficits in non-proliferative diabetic retinopathy
描述非增殖性糖尿病视网膜病变中面部识别缺陷的患病率和性质
- 批准号:
10667781 - 财政年份:2023
- 资助金额:
$ 34.72万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 34.72万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 34.72万 - 项目类别:
Toward therapeutic targeting of liquid-liquid phase separation dynamics in skin
皮肤液-液相分离动力学的治疗靶向
- 批准号:
10679610 - 财政年份:2023
- 资助金额:
$ 34.72万 - 项目类别: