Quality control of mislocalized membrane proteins
错误定位膜蛋白的质量控制
基本信息
- 批准号:10665785
- 负责人:
- 金额:$ 34.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisBindingBiogenesisBiological AssayBiosynthetic ProteinsCell Surface ReceptorsCell physiologyCellsCellular MembraneClientCollaborationsCytosolDefectDegradation PathwayDiseaseDislocationsDissectionEndoplasmic ReticulumEnsureFaceFunctional disorderGoalsHealthHomeostasisHumanHuntington DiseaseHydrophobicityImpairmentIon ChannelKnowledgeLongevityMediatingMembraneMembrane ProteinsMitochondriaMitochondrial Membrane ProteinMitochondrial ProteinsModelingMolecularN-terminalNeurodegenerative DisordersNeuronsNeurotransmittersOrganellesOrganismParkinson DiseaseProcessProtein BiosynthesisProteinsProteomeQuality ControlReactionRibosomesRoleSiteSortingSurfaceSynaptic VesiclesSystemTailTransmembrane DomainTriageeffective therapyinsightpreservationproteostasissecretory proteintraffickingtransmission process
项目摘要
PROJECT SUMMARY
The identities and functions of cellular membrane-bound compartments such as the endoplasmic reticulum
(ER), mitochondria, and synaptic vesicles, are largely determined by protein composition. Organelle
dysfunction and impaired membrane protein quality control (QC) are hallmarks of neurodegenerative disorders,
including amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, and Huntington's disease. Molecular-
level insights into the mechanisms that ensure high-fidelity membrane protein biogenesis are required to
understand how neurodegenerative diseases develop and identify effective treatments. All membrane proteins
face two fundamental biosynthetic challenges. First, they must localize to the correct cellular membrane.
Second, they must insert hydrophobic transmembrane domains into target membranes in the correct
orientation. It is not known how cells meet these basic biosynthetic requirements for the diverse membrane
proteins that make up 25-30% of the proteome. Using single-spanning membrane proteins as models, we have
established experimental systems of membrane protein biosynthesis and QC that are tractable for mechanistic
dissection. With these systems, we recently discovered that the ER-resident transporter ATP13A1 dislocates
mislocalized mitochondrial membrane proteins. Protein dislocation by ATP13A1 provides opportunities for
correct targeting and is required to maintain mitochondrial protein localization. In this proposal, we will leverage
ATP13A1 function as a molecular handle to study the mechanisms that lead to, recognize, and eliminate
aberrant proteins at the ER. In Aim 1, we will identify the biosynthetic factors that aberrantly insert
mitochondrial membrane proteins into the ER and determine how these mechanisms contribute to
mitochondrial protein homeostasis. In Aim 2, we will investigate the QC mechanisms that selectively recognize
and target mislocalized mitochondrial membrane proteins for ER-associated degradation (ERAD). In Aim 3, we
will investigate the topogenesis of type II membrane proteins that should insert into the ER with their N-
terminus in the cytosol. Because a subset of type II proteins is selectively destabilized by ATP13A1 depletion,
we hypothesize that these proteins harbor specific features prone to insertion in the wrong orientation, resulting
in the need for ATP13A1-mediated dislocation. Completion of this project will reveal mechanisms that mis-
insert membrane proteins into the ER, generate a mechanistic model of a mammalian ERAD pathway, and
shed light on how a handful of biosynthetic and QC factors handle a large and diverse clientele. Altogether,
these findings will reveal molecular-level insights into membrane protein QC target selection and mechanistic
principles underlying how cellular biosynthetic and QC mechanisms collaborate to ensure the integrity of
membrane protein biogenesis needed to preserve neuronal function.
项目概要
细胞膜结合区室(例如内质网)的特性和功能
(ER)、线粒体和突触小泡很大程度上由蛋白质组成决定。细胞器
功能障碍和膜蛋白质量控制 (QC) 受损是神经退行性疾病的标志,
包括肌萎缩侧索硬化症 (ALS)、阿尔茨海默病、帕金森病和亨廷顿舞蹈病。分子-
需要对确保高保真膜蛋白生物合成的机制有深入的了解
了解神经退行性疾病如何发展并确定有效的治疗方法。所有膜蛋白
面临两个基本的生物合成挑战。首先,它们必须定位到正确的细胞膜。
其次,他们必须以正确的方式将疏水性跨膜结构域插入目标膜中
方向。目前尚不清楚细胞如何满足不同膜的基本生物合成要求
占蛋白质组 25-30% 的蛋白质。使用单跨膜蛋白作为模型,我们有
建立了易于机械处理的膜蛋白生物合成和质量控制实验系统
解剖。通过这些系统,我们最近发现 ER 驻留转运蛋白 ATP13A1 脱位
线粒体膜蛋白定位错误。 ATP13A1 造成的蛋白质错位提供了机会
正确的靶向并且是维持线粒体蛋白定位所必需的。在本提案中,我们将利用
ATP13A1 作为分子手柄来研究导致、识别和消除的机制
ER 中的异常蛋白质。在目标 1 中,我们将识别异常插入的生物合成因子
线粒体膜蛋白进入内质网并确定这些机制如何促进
线粒体蛋白质稳态。在目标 2 中,我们将研究选择性识别的 QC 机制
并针对错误定位的线粒体膜蛋白进行内质网相关降解(ERAD)。在目标 3 中,我们
将研究 II 型膜蛋白的拓扑发生,这些蛋白应以其 N- 插入 ER 中
末端位于细胞质中。因为 II 型蛋白的一个子集会因 ATP13A1 耗尽而选择性地不稳定,
我们假设这些蛋白质具有容易以错误方向插入的特定特征,从而导致
需要 ATP13A1 介导的错位。该项目的完成将揭示错误的机制
将膜蛋白插入 ER,生成哺乳动物 ERAD 通路的机制模型,以及
揭示了少数生物合成和质量控制因子如何应对大量且多样化的客户。共,
这些发现将揭示膜蛋白 QC 靶点选择和机制的分子水平见解
细胞生物合成和 QC 机制如何协作以确保完整性的基本原理
保护神经元功能所需的膜蛋白生物发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sichen Shao其他文献
Sichen Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sichen Shao', 18)}}的其他基金
Quality control of mislocalized membrane proteins
错误定位膜蛋白的质量控制
- 批准号:
10517961 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Mechanism of VCP interaction and processing of neurodegenerative tau fibrils
VCP相互作用和神经退行性tau原纤维加工的机制
- 批准号:
10463018 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10371815 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别:
Loss of VCP Function in Frontotemporal Lobar Degeneration
额颞叶变性导致 VCP 功能丧失
- 批准号:
10440933 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别: