Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
基本信息
- 批准号:10570559
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAdenosineAffectBasic ScienceBindingBiological AssayBiomedical ResearchCancer ModelCancer cell lineCellsCollectionComplementDNADetectionDouble-Stranded RNAEngineeringEnzymesExhibitsFutureGenesGenetic TranscriptionGenetic VectorsGoalsGuanineHallmark CellHealth BenefitHumanImmuneImmune systemImmunologyIn VitroInosineInterventionLibrariesLogicMalignant NeoplasmsMammalian CellMedicineMessenger RNAMetaphorMethodsModificationMolecularMusMutationNamesNatureNeurosciencesNucleic AcidsOncolyticOncolytic virusesOrganismOrganoidsOutcomeOutputPathway interactionsPatientsPerformancePharmacologyProcessProteinsPublic HealthRNARNA EditingRNA VirusesReporterReportingSignal TransductionSpecificityTestingTherapeuticTranscriptTranslationsVariantVesicular stomatitis Indiana virusViralViral ProteinsViral VectorVirus DiseasesVirus Replicationadenosine deaminasebasecancer biomarkerscancer cellcancer therapycell typeclinically relevantconventional therapydelivery vehicledesigndesign-build-testdifferential expressionimprovedin vivomouse modeloncolytic virotherapyoperationoverexpressionprogramsresponsesenescencesensorsignal processingsingle-cell RNA sequencingtooltranscriptometranscriptomicsvectorvector vaccine
项目摘要
Abstract
There is a critical need for RNA sensors in living mammalian cells. With the advent of single-cell RNA
sequencing, the transcriptome of any cell type is readily obtainable if not already available. In contrast, we are
still in urgent need for a universal method to act on such transcriptomic information. If we can genetically express
arbitrary effector proteins in specific cell types according to their transcriptional markers, we would transform
large swaths of basic research and biomedical applications, such as immunology, neuroscience, and cancer
therapy. In addition, we would like such sensors to be programmable and operate at the post-transcription level.
One promising use case that would benefit from such sensors is cancer ablation, using an approach
dubbed “circuits as medicine”, where a genetic vector encoding an entire “circuit” (metaphor for a collection of
biomolecules engineered to regulate each other and implement specific functions) is delivered intracellularly.
The circuit will sense the cellular states based on hallmarks of cancer (i.e., the overexpression of specific RNAs
or the presence of specific mutations), process the signals, and deliver specific therapeutic payloads accordingly
in cancer cells, directly killing them while educating the immune system to search and destroy other cancer cells.
Previous efforts largely relied on strand displacement, a successful strategy for nucleic acid-based signal
processing outside cells. However, their functionality has remained inadequate inside living mammalian cells,
most likely because the double-stranded RNA (dsRNA) formed during strand displacement signals viral infection
and are actively engaged by mammalian proteins in the immune pathways. We hypothesize that, because it is
impossible to evade the omnipresent dsRNA-interacting proteins, it is wiser to embrace them. In this proposal,
we will leverage endogenous human enzymes that recognize and specifically edit dsRNA, to create sensors that
can be programmed to respond to arbitrary RNA transcripts (“triggers”).
First, we will use fast design-build-test cycles in vitro to optimize sensor performance. We will focus on
increasing sensor output in response to triggers by engineering the sensor configuration and its sequence choice,
and we will characterize how the sensor affects and is affected by the cellular context. Second, to enable the
quantitative distinction of different trigger levels and the integration of multiple triggers, we will engineer
threshold-setting modifications and AND logic gates. Third, leveraging the unique post-transcriptional nature of
such sensors and gates, we will combine them with mRNA or an oncolytic RNA virus as delivery vectors, which
has traditionally been difficult to control. Last by not least, we will validate the performance and the therapeutic
potential of the sensors, gates, and the RNA vectors in cancer cell lines.
The future directions of the proposed project include continual optimization of the sensors, logic gates,
and vectors, testing them in more realistic cancer models including mouse models and patient-derived organoids,
and applying the tools to other fields.
抽象的
随着单细胞 RNA 的出现,活体哺乳动物细胞迫切需要 RNA 传感器。
通过测序,任何细胞类型的转录组即使尚未可用,也很容易获得。
如果我们能够通过基因表达的话,仍然迫切需要一种通用的方法来作用于此类转录组信息。
根据其转录标记,特定细胞类型中的任意效应蛋白,我们将转化
大量基础研究和生物医学应用,例如免疫学、神经科学和癌症
此外,我们希望此类传感器能够编程并在转录后水平运行。
受益于此类传感器的一个有前途的用例是癌症消融,使用一种方法
被称为“电路作为医学”,其中编码整个“电路”的遗传载体(隐喻为一组
被设计为相互调节并实现特定功能的生物分子)在细胞内传递。
该电路将根据癌症特征(即特定 RNA 的过度表达)来感知细胞状态
或特定突变的存在),处理信号并相应地传递特定的治疗有效负载
在癌细胞中,直接杀死它们,同时教育免疫系统搜索并摧毁其他癌细胞。
以前主要依赖于链置换工作,这是基于核酸的信号的成功策略
然而,它们在活哺乳动物细胞内的功能仍然不足,
很可能是因为链置换过程中形成的双链 RNA (dsRNA) 发出病毒感染的信号
并且在免疫途径中被哺乳动物蛋白积极参与,我们参与其中,因为它确实如此。
逃避无处不在的 dsRNA 相互作用蛋白是不可能的,但在这个提议中,拥抱它们是明智的。
我们将利用识别和特异性编辑 dsRNA 的内源性人类酶来创建传感器
可以通过编程来响应任意 RNA 转录本(“触发器”)。
首先,我们将使用快速的体外设计-构建-测试循环来优化传感器性能。
通过设计传感器配置及其序列选择来增加传感器输出以响应触发,
其次,我们将描述传感器如何影响细胞环境以及如何受细胞环境影响。
不同触发级别的定量区分以及多个触发的集成,我们将设计
第三,利用独特的转录后性质。
这样的传感器和门,我们将它们与 mRNA 或溶瘤 RNA 病毒作为传递载体结合起来,这
传统上很难控制。最后,我们将验证性能和治疗效果。
癌细胞系中传感器、门和 RNA 载体的潜力。
该项目的未来方向包括传感器、逻辑门的持续优化,
和载体,在更真实的癌症模型中测试它们,包括小鼠模型和患者来源的类器官,
并将这些工具应用到其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing J Gao其他文献
Xiaojing J Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing J Gao', 18)}}的其他基金
A Novel Class of Synthetic Receptors to Empower the Age of mRNA Therapies
一类新型合成受体将推动 mRNA 治疗时代的到来
- 批准号:
10687517 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
- 批准号:
10612257 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
- 批准号:
10707194 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10115864 - 财政年份:2020
- 资助金额:
$ 19.41万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10379933 - 财政年份:2020
- 资助金额:
$ 19.41万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
DNA甲基化对选择性多聚腺苷酸化的影响及在肝癌复发中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Modular Reagents for Programmable RNA Manipulation by Endogenous Proteins
用于内源蛋白可编程 RNA 操作的模块化试剂
- 批准号:
10605050 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Novel mechanisms regulating adipose tissue function in health and disease
调节健康和疾病中脂肪组织功能的新机制
- 批准号:
10736765 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
The curious case of PARP1 in CNS myelin formation and repair
PARP1 在中枢神经系统髓磷脂形成和修复中的奇特案例
- 批准号:
10621372 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10503919 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10672366 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别: