Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
基本信息
- 批准号:10544344
- 负责人:
- 金额:$ 49.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAppearanceArtificial IntelligenceBase SequenceBenignBladderBladder NeoplasmCancer DetectionCancer DiagnosticsCancer PatientCancerousCessation of lifeClinicClinicalCommunitiesComplexComputer Vision SystemsCystoscopyDataData SetDetectionDiagnosisDiagnosticDiagnostic SensitivityEnsureEnvironmentEquipmentExcisionFutureGoalsHealthcareHistologicHospitalsHumanImageImage AnalysisInflammatoryInterventionKnowledgeLearningLesionLightMalignant NeoplasmsMalignant neoplasm of urinary bladderMedical ImagingMedical centerModelingMorbidity - disease rateMorphologyNewly DiagnosedOperating RoomsOperative Surgical ProceduresOutcomePapillaryPathologicPatientsPerformancePhysician AssistantsPredictive ValueProcessProtocols documentationProviderRecurrenceRecurrent Malignant NeoplasmResearchRoleSiteSpecificityStagingStandardizationSurgeonTechnologyTestingThe Cancer Imaging ArchiveTimeTrainingTranslatingTransurethral ResectionUnited StatesUniversitiesUrologistUrologyValidationWashingtonWorkannotation systemaugmented intelligenceautomated segmentationbody systemcancer diagnosiscancer imagingcancer recurrencecancer riskcancer surgerycare burdencloud basedconvolutional neural networkcost effectivedeep learning algorithmdeep neural networkdemographicsdesignexperiencehigh riskimage guidedimage processingimprovedimproved outcomeindexingmillisecondmortalitymultidisciplinaryneuralnovelpatient stratificationprospectiverecruitrecurrent neural networkrisk stratificationscreeningsegmentation algorithmtooltumortumor progression
项目摘要
PROJECT SUMMARY
Bladder cancer is the sixth most common cancer in the U.S., has one of the highest recurrence rates of all
cancers, and is the most expensive cancer to treat from diagnosis to death. Current standard for bladder
cancer diagnosis relies on clinic-based white light cystoscopy for initial screening, followed by transurethral
resection of bladder tumor in the operating room for pathologic diagnosis and local staging. White light
cystoscopy has several well recognized shortcomings, particularly incomplete detection, thereby leading to
suboptimal resection and contributing to cancer recurrence and progression. Our goal is to improve outcomes
for bladder cancer patients through integration of a deep learning algorithm to improve cystoscopic detection
and enhance surgical resection.
Artificial intelligence (AI)-based on deep neural networks have demonstrated remarkable capacity to learn
complex relationships and incorporate existing knowledge into the inference model. We hypothesize that AI-
augmented detection of bladder tumor will improve diagnostic cystoscopy in the clinic setting to identify
suspicious lesions and improve the quality of transurethral resection in the operating room, thereby reducing
overall cancer recurrence and outcome. Towards the goal of establishing a paradigm of AI-based framework
for augmented detection of bladder cancer, we will leverage our strong preliminary data and outstanding
environment in AI research. We propose three specific aims: 1) To curate a high-quality annotated cystoscopy
imaging dataset to optimize deep neural network CystoNet; 2) To design and optimize CystoNet for real-time
cystoscopic navigation and cancer detection; and 3) To conduct a prospective multicenter validation of
CystoNet during bladder cancer surgery.
Successful completion of the studies proposed here will serve to translate deep learning algorithm to the
dynamic environment of cystoscopic surgery without the need for specialized instrumentaitons. We foresee
our approach will improve the outcome of a major cancer and genearlizable to other organ systems amenable
for endsocopic interventions.
项目概要
膀胱癌是美国第六大常见癌症,是所有癌症中复发率最高的癌症之一
癌症,是从诊断到死亡治疗费用最高的癌症。膀胱现行标准
癌症诊断依靠临床白光膀胱镜检查进行初步筛查,然后进行经尿道检查
在手术室切除膀胱肿瘤进行病理诊断和局部分期。白光
膀胱镜检查有几个众所周知的缺点,特别是检测不完整,从而导致
次优切除并导致癌症复发和进展。我们的目标是改善结果
通过集成深度学习算法来改善膀胱镜检测,为膀胱癌患者提供治疗
并加强手术切除。
基于深度神经网络的人工智能(AI)已表现出卓越的学习能力
复杂的关系并将现有知识纳入推理模型。我们假设人工智能-
膀胱肿瘤的增强检测将改善临床环境中的诊断性膀胱镜检查,以识别
可疑病变,提高手术室经尿道电切术的质量,从而减少
总体癌症复发和结果。朝着建立基于人工智能的框架范式的目标
为了增强膀胱癌的检测,我们将利用我们强大的初步数据和杰出的
人工智能研究环境。我们提出三个具体目标:1)策划高质量的带注释膀胱镜检查
用于优化深度神经网络 CystoNet 的成像数据集; 2)实时设计和优化CystoNet
膀胱镜导航和癌症检测; 3) 进行前瞻性多中心验证
膀胱癌手术期间的 CystoNet。
成功完成此处提出的研究将有助于将深度学习算法转化为
膀胱镜手术的动态环境,无需专门的仪器。我们预见
我们的方法将改善主要癌症的治疗结果,并可推广到其他适合的器官系统
用于内窥镜干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH C LIAO其他文献
JOSEPH C LIAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH C LIAO', 18)}}的其他基金
Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
- 批准号:
10365872 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
MagSToNE - a magnetic system for kidney stone fragment elimination
MagSToNE - 用于消除肾结石碎片的磁性系统
- 批准号:
10491338 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
BCCMA: Basic and Translational Mechanisms of Cancer Initiation of the Urothelium in Veterans Exposed to Carcinogens: Leveraging Artificial Neural Networks to Enhance Detection of Carcinoma in situ
BCCMA:暴露于致癌物的退伍军人尿路上皮癌症发生的基本和转化机制:利用人工神经网络增强原位癌的检测
- 批准号:
10260145 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
MagSToNE - a magnetic system for kidney stone fragment elimination
MagSToNE - 用于消除肾结石碎片的磁性系统
- 批准号:
10354258 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
BCCMA: Basic and Translational Mechanisms of Cancer Initiation of the Urothelium in Veterans Exposed to Carcinogens: Leveraging Artificial Neural Networks to Enhance Detection of Carcinoma in situ
BCCMA:暴露于致癌物的退伍军人尿路上皮癌症发生的基本和转化机制:利用人工神经网络增强原位癌的检测
- 批准号:
10513315 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
- 批准号:
10293596 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
- 批准号:
10015540 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
- 批准号:
10514572 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
A Droplet-based single cell platform for pathogen identification and AST
用于病原体识别和 AST 的基于 Droplet 的单细胞平台
- 批准号:
8875827 - 财政年份:2015
- 资助金额:
$ 49.61万 - 项目类别:
A Droplet-based single cell platform for pathogen identification and AST
用于病原体识别和 AST 的基于 Droplet 的单细胞平台
- 批准号:
9038992 - 财政年份:2015
- 资助金额:
$ 49.61万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
- 批准号:
10522731 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
FIrst REsponse BUrn Diagnostic System (FIRE-BUDS)
第一响应烧伤诊断系统 (FIRE-BUDS)
- 批准号:
10392084 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
- 批准号:
10522731 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
- 批准号:
10686969 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
- 批准号:
10365872 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别: