Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
基本信息
- 批准号:10544751
- 负责人:
- 金额:$ 15.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnti-Bacterial AgentsAntibioticsBacteriaBacterial ProteinsBinding ProteinsBiochemicalBioinformaticsBiological ProcessCationsCellsChargeCommunicable DiseasesCompetenceDataDentalDental EnamelDental ImplantsDental cariesDependenceDevelopmentDivalent CationsEndocarditisEnvironmentEnzymesEscape MutantEvaluationExposure toFoundationsFutureGenesGeneticGenetic ScreeningGenetic TranscriptionGoalsGrowthHealth Care CostsHomeostasisHomologous GeneHumanHuman bodyImplantInfective endocarditisIonsMagnesiumMeasurementMembraneMembrane ProteinsMetalsMicrobial BiofilmsMolecular CloningMutagenesisMycobacterium tuberculosisNucleic AcidsOral cavityPathway interactionsPersonsPhenotypePlayPredispositionProtein translocationProteinsProteomicsQuality of lifeRegulationResistanceResistance developmentRibosomesRoleSalivaSaltsSignal Recognition ParticleStreptococcus mutansSuppressor MutationsSurgeonTherapeuticTooth structureToothpasteToxic effectTransition ElementsVertebratesVirulenceWorkanticariesbonecofactorcombinatorialdental agentdivalent metalefflux pumpexperienceforward geneticsgain of functiongenetic approachmembrane biogenesismutantnoveloral bacteriaoral pathogenoral streptococcipathogenprotein transportreverse geneticsskillstooluptake
项目摘要
Project Summary
Dental caries is a ubiquitous infectious disease that impacts the quality of life of billions of people
worldwide. According to the Surgeon General (2020), ~USD 125 billion dollars are spent annually on
related treatments in the USA alone. A major causative agent of dental caries is Streptococcus mutans,
which is also associated with infectious endocarditis. The native environment of S. mutans is rich in
metal cations including Ca2+, K+, and Mg2+. In fact, Mg2+ is the most abundant divalent metal cation in
bacteria and fourth most abundant in vertebrates including humans. Of the total Mg2+ content in the
human body, 60‐70% is found in bones and teeth. Therefore, the oral bacterium, S. mutans, is
constantly exposed to Mg2+ salts. Magnesium is an important component of toothpastes and dental
implants. Despite its abundance and its requirement to support bacterial growth and virulence , Mg2+
homeostasis has not yet been studied in S. mutans, or other oral streptococci. A few isolated studies
discussed the significance of supplemental Mg2+ salts for S. mutans biofilm formation and genetic
competence, but Mg2 transport is not understood. We will address Mg2+ homeostasis from a novel
perspective, where we will not only characterize the transporters, but also study their insertion into
the membrane. Membrane localization/insertion is a key requisite for the proper functioning of all
membrane proteins. Deletion of putative transporters singly and in combination, followed by
measurement of cellular metal content will establish identity of Mg2+ transporters. Compensatory
uptake/efflux by other divalent metal cation transporters have been recognized to interfere with Mg2+
homeostasis in other bacteria. Therefore, Mn2+ and Fe2+ transporters are also included in this study.
Mutants defective in putative Mg2+ transporter(s) will be evaluated at the level of transcription,
cellular metal content, and insertion into membrane. Next, we will use a forward genetic screen to
identify gain of function/suppressor mutations in Mg2+‐replete/deplete conditions using mutants
defective in Mg2+ transporters, or in mutants lacking membrane biogenesis machinery components
that impact Mg2+ homeostasis. We appreciate the significance of proper localization of transporters to
their activity; therefore, we will apply the experience/tools/skills of our lab to study that aspect of
magnesium homeostasis in S. mutans. Characterization of insertion pathways will involve
construction and characterization of combinatorial mutants of membrane biogenesis components
with Mg2+ transporters, and phenotypic analysis following that used for characterization of the
transport mutants. Molecular cloning, reverse and forward genetics, bioinformatics, and biochemical
approaches will be utilized to address the aims of this proposal. Ultimately a better understanding of
Mg2+ homeostasis in S. mutans is expected to guide future development of novel anti‐caries strategies.
项目概要
龋齿是一种普遍存在的传染病,影响着数十亿人的生活质量
根据外科医生 (Surgeon General)(2020 年)的统计,全球每年花费约 1,250 亿美元。
仅在美国就有相关治疗方法,龋齿的主要致病菌是变形链球菌,
这也与感染性心内膜炎有关。变形链球菌的原生环境富含。
金属阳离子包括Ca2+、K+和Mg2+ 事实上,Mg2+是最丰富的二价金属阳离子。
细菌中的 Mg2+ 含量在包括人类在内的脊椎动物中排名第四。
人体中,60-70%存在于骨骼和牙齿中,因此,口腔细菌——变形链球菌。
经常接触 Mg2+ 盐,镁是牙膏和牙科的重要成分。
尽管 Mg2+ 含量丰富并且需要支持细菌生长和毒力,但 Mg2+
尚未对变形链球菌或其他口腔链球菌的稳态进行研究。
讨论了补充 Mg2+ 盐对于变形链球菌生物膜形成和遗传的重要性
能力,但 Mg2+ 运输尚不清楚,我们将从小说中解决 Mg2+ 稳态问题。
我们不仅要描述转运蛋白的特征,还要研究它们插入到
膜的定位/插入是所有功能正常发挥作用的关键必要条件。
单独或组合删除假定的转运蛋白,然后删除。
细胞金属含量的测量将确定 Mg2+ 补偿转运蛋白的身份。
其他二价金属阳离子转运蛋白的吸收/流出已被认为会干扰 Mg2+
因此,Mn2+ 和 Fe2+ 转运蛋白也包括在本研究中。
假定的 Mg2+ 转运蛋白缺陷的突变体将在转录水平进行评估,
接下来,我们将使用正向遗传筛选来确定细胞金属含量和插入膜。
使用突变体识别 Mg2+ 充足/耗尽条件下的功能增益/抑制突变
Mg2+转运蛋白有缺陷,或缺乏膜生物发生机制组件的突变体
我们认识到转运蛋白的正确定位对镁离子稳态的重要性。
他们的活动;因此,我们将运用我们实验室的经验/工具/技能来研究这方面的问题
变形链球菌中的镁稳态将涉及插入途径的表征。
膜生物发生成分组合突变体的构建和表征
与 Mg2+ 转运蛋白,以及用于表征的表型分析
分子克隆、反向和正向遗传学、生物信息学和生物化学。
最终将利用各种方法来实现该提案的目标。
变形链球菌中的 Mg2+ 稳态有望指导新型抗龋齿策略的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surabhi Mishra其他文献
Surabhi Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surabhi Mishra', 18)}}的其他基金
Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
- 批准号:
10353066 - 财政年份:2022
- 资助金额:
$ 15.25万 - 项目类别:
相似国自然基金
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
- 批准号:52371012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
- 批准号:52371282
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于可剪切/不可剪切纳米析出相协同调控的铝合金强韧化机制研究
- 批准号:52301162
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
辐照锆合金不同滑移系无缺陷通道的形成机理研究
- 批准号:12302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
- 批准号:
10353066 - 财政年份:2022
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10306931 - 财政年份:2020
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
9895281 - 财政年份:2019
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10063989 - 财政年份:2019
- 资助金额:
$ 15.25万 - 项目类别:
Antibacterial Biocompatible Bioresorbable Alloys for Musculoskeletal Implants
用于肌肉骨骼植入物的抗菌生物相容性生物可吸收合金
- 批准号:
9251239 - 财政年份:2016
- 资助金额:
$ 15.25万 - 项目类别: