Radiation-induced vascular reprogramming in glioblastoma

放射诱导的胶质母细胞瘤血管重编程

基本信息

项目摘要

Summary Glioblastoma (GBM), the most common primary brain tumor is virtually always fatal. The primary modes of therapy—surgery, radiation and chemotherapy with temozolomide—have led to only marginal improvements in survival. A hallmark of GBM is their high vascularity. Blood vessels within GBM, consisting of mostly endothelial cells and pericytes, not only play the important role of providing nutrients and oxygen to the tumor, but also provide direct trophic support to the tumor cells and serve as conduits for migration out of the tumor. However, anti-angiogenic therapies directed against tumor vasculature have not been successful. A number of studies have revealed that tumor pericytes and endothelial cells can be derived directly from tumor cells, although tumor-derived endothelial cells are relatively rare occurrences in untreated tumors. The number of tumor-derived endothelial cells is greatly increased in recurrent tumors, suggesting that glioma therapy, such as radiation, could influence this process. Our preliminary studies show that radiation can induce the production of endothelial-like and pericyte-like cells in vitro and in animal models in vivo. These reprogrammed cells are important for the growth of the tumor following radiation in vivo and we have begun to define what factors the reprogrammed vascular cells produce to support the growth of the remaining tumor cells following radiation. Our preliminary data indicate that radiation induces altered chromatin states that allow for reprogramming to occur; a process that is potentially therapeutically targetable through the inhibition of the histone acetyltransferase (HAT), P300. The goals of the current studies are to understand the process of vascular reprogramming (RIR) and to determine how it influences brain tumor biology. Our hypothesis is that vascular reprogrammed cells provide critical trophic support to the remaining tumor cells under the harsh conditions that occur following radiation. First, in Aim 1 we will determine whether therapeutically relevant doses of radiation promote vascular RIR. We will then use cell ablation strategies to validate our preliminary data indicating that radiation-induced reprogramming is important for the subsequent growth of the tumor following radiation treatment using both xenotransplantation and immunocompetent syngeneic mouse models. Next, we will explore the mechanisms by which radiation reprogrammed endothelial-like and pericyte-like cells promote the growth of the remaining tumor, determining what specific factors they elaborate, and whether these factors are responsible for tumor survival and growth following radiation. We will then test the hypothesis that radiation induces the formation of vascular-like cells through modification of chromatin accessibility via augmentation of histone acetylation through the P300 histone acetyltransferase, allowing for access of vascular-specifying transcription factors. Finally, we will use pharmacologic agents to therapeutically target the process of RIR through inhibition of the P300 HAT. These experiments can lead to a new understanding of mechanisms underlying resistance to radiation therapy and open the door to new treatments.
概括 胶质母细胞瘤(GBM)是最常见的原发性脑肿瘤,几乎总是致命的。 治疗——手术、放疗和替莫唑胺化疗——仅带来了微小的改善 GBM 的一个标志是 GBM 内的血管丰富,主要由血管组成。 内皮细胞和周细胞,不仅发挥着为肿瘤提供营养和氧气的重要作用, 而且还为肿瘤细胞提供直接的营养支持,并充当肿瘤细胞迁移出肿瘤的通道。 然而,针对肿瘤脉管系统的抗血管生成疗法尚未取得成功。 研究表明肿瘤周细胞和内皮细胞可以直接来源于肿瘤细胞, 尽管肿瘤源性内皮细胞在未经治疗的肿瘤中相对罕见。 肿瘤来源的内皮细胞在复发性肿瘤中大大增加,表明神经胶质瘤治疗,例如 我们的初步研究表明,辐射可以诱发这一过程。 在体外和体内动物模型中产生内皮样和周细胞样细胞。 细胞对于体内辐射后肿瘤的生长很重要,我们已经开始定义什么 重新编程的血管细胞产生的因子支持剩余肿瘤细胞的生长 我们的初步数据表明,辐射会诱导染色质状态,从而允许 重编程的发生;通过抑制 组蛋白乙酰转移酶(HAT),P300 当前研究的目标是了解这一过程。 血管重编程(RIR)并确定它如何影响脑肿瘤生物学。 血管重编程细胞为严酷环境下剩余的肿瘤细胞提供关键的营养支持 首先,在目标 1 中,我们将确定是否具有治疗相关性。 然后,我们将使用细胞消融策略来验证我们的初步结果。 数据表明辐射诱导的重编程对于肿瘤的后续生长很重要 使用异种移植和免疫活性同基因小鼠模型进行放射治疗后。 接下来,我们将探讨辐射重编程内皮样和周细胞样细胞的机制 促进剩余肿瘤的生长,确定它们阐述的具体因素,以及是否 这些因素导致辐射后肿瘤的存活和生长,然后我们将检验该假设。 辐射通过改变染色质可及性来诱导血管样细胞的形成 通过 P300 组蛋白乙酰转移酶增强组蛋白乙酰化,从而允许访问 最后,我们将使用药物来靶向治疗。 通过抑制 P300 HAT 的 RIR 过程可以使人们对 RIR 过程有新的认识。 放射治疗耐药性的潜在机制,并为新疗法打开了大门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HARLEY IAN KORNBLUM其他文献

HARLEY IAN KORNBLUM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HARLEY IAN KORNBLUM', 18)}}的其他基金

Radiation-induced vascular reprogramming in glioblastoma
放射诱导的胶质母细胞瘤血管重编程
  • 批准号:
    10375792
  • 财政年份:
    2021
  • 资助金额:
    $ 46.41万
  • 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
  • 批准号:
    10426154
  • 财政年份:
    2020
  • 资助金额:
    $ 46.41万
  • 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
  • 批准号:
    10085984
  • 财政年份:
    2020
  • 资助金额:
    $ 46.41万
  • 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
  • 批准号:
    10224912
  • 财政年份:
    2020
  • 资助金额:
    $ 46.41万
  • 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
  • 批准号:
    10686887
  • 财政年份:
    2020
  • 资助金额:
    $ 46.41万
  • 项目类别:
Project 4: Novel epigenetic treatment of IDH mutant gliomas
项目4:IDH突变神经胶质瘤的新型表观遗传学治疗
  • 批准号:
    10225553
  • 财政年份:
    2017
  • 资助金额:
    $ 46.41万
  • 项目类别:
Project 4: Novel epigenetic treatment of IDH mutant gliomas
项目4:IDH突变神经胶质瘤的新型表观遗传学治疗
  • 批准号:
    9983050
  • 财政年份:
    2017
  • 资助金额:
    $ 46.41万
  • 项目类别:
Stem cell- based studies of gene-environment interactions in PTEN- associated autism
基于干细胞的 PTEN 相关自闭症基因-环境相互作用研究
  • 批准号:
    9133215
  • 财政年份:
    2016
  • 资助金额:
    $ 46.41万
  • 项目类别:
Stem Cells
干细胞
  • 批准号:
    8516544
  • 财政年份:
    2013
  • 资助金额:
    $ 46.41万
  • 项目类别:
Stem Cells
干细胞
  • 批准号:
    8382154
  • 财政年份:
    2012
  • 资助金额:
    $ 46.41万
  • 项目类别:

相似国自然基金

血管生成抑制剂通过肿瘤相关高内皮静脉调控三阴乳腺癌三级淋巴结构成熟的机制研究
  • 批准号:
    82373278
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于不对称双-β-咔啉骨架的血管生成抑制剂的设计、合成及活性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
免疫检查点抑制剂联合抗血管生成治疗肝癌协同机制的定量磁共振研究
  • 批准号:
    82001786
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
抗血管生成抑制乳腺癌生长转移的作用机制及其靶向抑制剂研究
  • 批准号:
    81911530168
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    国际(地区)合作与交流项目
凝血酶抑制剂对肺癌血管生成拟态形成的抑制作用及分子机制研究
  • 批准号:
    81902995
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
  • 批准号:
    10727929
  • 财政年份:
    2023
  • 资助金额:
    $ 46.41万
  • 项目类别:
A Bioengineering Approach to Gene Therapy for Peripheral Arterial Disease
外周动脉疾病基因治疗的生物工程方法
  • 批准号:
    9249087
  • 财政年份:
    2014
  • 资助金额:
    $ 46.41万
  • 项目类别:
Novel treatment strategies for enhancing sunitinib response in renal cell cancer
增强肾细胞癌舒尼替尼反应的新治疗策略
  • 批准号:
    8524387
  • 财政年份:
    2013
  • 资助金额:
    $ 46.41万
  • 项目类别:
Novel treatment strategies for enhancing sunitinib response in renal cell cancer
增强肾细胞癌舒尼替尼反应的新治疗策略
  • 批准号:
    8651433
  • 财政年份:
    2013
  • 资助金额:
    $ 46.41万
  • 项目类别:
Effect of Maspin on Corneal Heme-and lymph- angiogenesis
Maspin 对角膜血红素和淋巴管生成的影响
  • 批准号:
    8187367
  • 财政年份:
    2011
  • 资助金额:
    $ 46.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了