Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
基本信息
- 批准号:7739678
- 负责人:
- 金额:$ 22.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsBiocompatible MaterialsBovine Serum AlbuminCoumarinsDrug Delivery SystemsDrug FormulationsDrug StabilityEncapsulatedEvaluationExhibitsFigs - dietaryGlycolatesGoalsHealedHeatingHindlimbHydration statusIn VitroIncubatedInjectableLabelLeuprolideLeuprolide AcetateMethodologyMethodsMicroencapsulationsMicrospheresModelingMolecular ConformationMusNanosphereOrganic solvent productPeptidesPerformancePharmaceutical PreparationsPhysiologicalPolymersPreparationProcessProteinsRattusResearchResearch PersonnelRouteScientistSolutionsSolventsStentsSwellingSystemTemperatureTestingTestosteroneTherapeuticTissue EngineeringVaccine AntigenVascular Endothelial Growth FactorsWateralpha benzopyroneaqueousbasebiodegradable polymerbiomaterial preparationclinically relevantcontrolled releaseevaporationhealingin vivointerestinterfacialnovelpoint of carepreventpublic health relevancescaffoldseal
项目摘要
DESCRIPTION (provided by applicant): Our ultimate goal is to develop a new and simple method to microencapsulate drugs and other bioactive substances, particularly biomacromolecules such as proteins and peptides, in biodegradable controlled-release polymers. Current methods of microencapsulation in polymers such as poly(lactic-co-glycolic acid) (PLGA) suffer from: a) protein instability including use of protein-denaturing organic solvents, b) expensive large-scale, aseptic processing for encapsulation of each peptide/protein of interest, and c) the inability of clinicians at the point-of-care or other non formulation scientists in the field to effectively perform encapsulation. We will exploit our novel finding of spontaneous PLGA pore closing to microencapsulate proteins and peptides by: creating polymer delivery systems with defined pore networks, placing the polymers in the presence of an aqueous drug solution of interest, and then causing the pore network to close, e.g., by simple heating to physiological temperature. Unlike the vast majority of microencapsulation methodologies, which place drug in contact with dissolved polymer before or during microencapsulation, this approach creates a new paradigm in microencapsulation, whereby the biomaterial system is initially created and then microencapsulation is performed at the very end of preparation. In a sense, the polymer pore network microencapsulates by "itself" spontaneously-hence the term, "self-microencapsulation." Moreover, microencapsulation a) takes place under nondenaturing conditions without the need for organic solvent, b) could be done inexpensively with terminally sterilized porous PLGA microspheres for multiple peptides and/or proteins, c) would be applicable to numerous polymer configurations and geometries such as microspheres, nanospheres, tissue engineering scaffolds, drug-eluting stents, and d) could be performed by clinicians and investigators in the field, since encapsulation is by simple aseptic mixing of protein and polymer. This proposal will test the hypothesis that PLGA microspheres entrapping high loading of protein or peptide drugs can be prepared reproducibly by self-microencapsulation, and the resulting polymer will exhibit excellent drug stability and release performance both in vitro and in vivo. This hypothesis will be tested in 3 specific aims: 1) determine the effect of formulation variables on self- microencapsulation of model proteins, 2) investigate the mechanism of spontaneous pore closing in aqueous media, and 3) test the feasibility of self-encapsulation to stabilize and control the release of therapeutic peptides and proteins in vitro and in vivo.
PUBLIC HEALTH RELEVANCE: This project tests the feasibility of a brand new method of microencapsulation based on a recent finding from our group demonstrating how biodegradable polymers can heal their tiny holes and cracks spontaneously in water. The microencapsulation method does not use organic solvents and could have far reaching applications to the slow delivery of the important biomacromolecular class of drugs and vaccine antigens from injectable depots, tissue engineering scaffolds, and drug-eluting stents.
描述(由申请人提供):我们的最终目标是开发一种新的简单方法,以在可生物降解的受控释放聚合物中微封装药物和其他生物活性物质,尤其是蛋白质和肽等生物大分子。当前在聚合物(例如聚(乳酸 - 乙醇酸)(PLGA)等聚合物中的微囊泡方法)受到以下:a)蛋白质不稳定性,包括使用蛋白质污染有机溶剂,b)昂贵的大规模的无菌处理,用于对每种肽/蛋白质的封装,以及对临床的表现,或者对临床的表现不佳。我们将通过以下方式利用自发的PLGA孔封闭到微囊蛋白和肽的新发现,通过:创建具有定义的孔网络的聚合物输送系统,将聚合物放置在感兴趣的水溶液溶液中,然后使孔网络闭合,例如,通过简单的热量加热到生理学温度。与绝大多数微囊化方法论不同,在微囊化之前或过程中,将药物与溶解聚合物接触,这种方法在微囊化中产生了新的范式,最初会产生生物材料系统,然后在制备结束时进行微囊泡。从某种意义上说,聚合物孔网络通过“自发自发”术语“自我微囊化”。 Moreover, microencapsulation a) takes place under nondenaturing conditions without the need for organic solvent, b) could be done inexpensively with terminally sterilized porous PLGA microspheres for multiple peptides and/or proteins, c) would be applicable to numerous polymer configurations and geometries such as microspheres, nanospheres, tissue engineering scaffolds, drug-eluting stents, and d) could由于封装是通过蛋白质和聚合物的简单混合封装的,因此由临床医生和研究人员进行。该提案将检验以下假设:PLGA微球可以通过自我微囊化来重现蛋白质或肽药物的高负载,并且所得聚合物将在体外和体内表现出出色的药物稳定性和释放性能。该假设将在3个具体目的中进行检验:1)确定配方变量对模型蛋白的自微囊化的影响,2)研究水性培养基中自发性孔隙关闭的机制,以及3)测试自我结合的可行性,可自我封闭,以稳定和控制Intros和Vivo的疗法蛋白质稳定和控制。
公共卫生相关性:该项目基于我们小组的最新发现,证明了可生物降解的聚合物如何治愈其微小的孔和在水中自发破解,因此该项目测试了全新的微型塑料方法的可行性。微囊化方法不使用有机溶剂,并且可能在较慢的生物焦分子类药物和疫苗抗原从可注射仓,组织工程脚手架和药物淘汰支架的情况下缓慢地应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN P. SCHWENDEMAN其他文献
STEVEN P. SCHWENDEMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN P. SCHWENDEMAN', 18)}}的其他基金
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10186743 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10377507 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10590662 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photo-Release of Nitric Oxide for Antimicrobial Inhalation Therapy
用于抗菌吸入疗法的一氧化氮的受控光释放
- 批准号:
9298198 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别:
Investigation of peptide-polymer interactions in PLGA microspheres
PLGA 微球中肽-聚合物相互作用的研究
- 批准号:
9346576 - 财政年份:2016
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
9131455 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
8670377 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
7844194 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
- 批准号:
7894812 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
6629146 - 财政年份:2001
- 资助金额:
$ 22.72万 - 项目类别:
相似国自然基金
基于温敏磁性水凝胶材料对循环肿瘤细胞的保存及机制研究
- 批准号:21908160
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
骨折修复用多孔铌钽钛生物材料的有机模板法制备及表面微环境构建
- 批准号:51904357
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于微流控芯片的镁合金降解与血管内皮重建交互作用的研究
- 批准号:51901137
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
低弹性模量高强度多孔钛基金属玻璃的制备及其生物学性能研究
- 批准号:51871077
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
利用有机-无机复合材料制备疫苗等生物制品的新型制剂
- 批准号:31800793
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10623684 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10203795 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
9982765 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10676258 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Fluorescence-based molecular imaging of in vivo release kinetics
基于荧光的体内释放动力学分子成像
- 批准号:
9429542 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别: