Mechanisms of DNA damage processing and the initiation of Nucleotide Excision Repair
DNA损伤处理机制和核苷酸切除修复的启动
基本信息
- 批准号:10513526
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:2-Acetylaminofluorene3-DimensionalAntineoplastic AgentsBindingBiochemicalBiologicalBiomedical ResearchBiophysicsCarcinogensCell physiologyCellsChemotherapy-Oncologic ProcedureChromatinCircular DNACisplatinClinicalCockayne SyndromeCollaborationsComplexCryoelectron MicroscopyDNADNA AdductsDNA DamageDNA RepairDNA Repair PathwayDNA lesionDNA-Protein InteractionDefectDiseaseERCC3 geneElectron MicroscopeEnvironmentExcision RepairFluorescenceFluorescence Resonance Energy TransferFluorescence SpectroscopyFoundationsFunctional disorderGenetic TranscriptionGenomic DNAGenomic InstabilityGoalsHomologous GeneHumanIn VitroInstitutionInterdisciplinary StudyLeadLesionLicensingLinkMalignant NeoplasmsMapsMass Spectrum AnalysisMeasurementMedicalMethodologyModelingMolecularMolecular ConformationMultiprotein ComplexesMutationNucleotide Excision RepairOutcomeOutcomes ResearchPathologicPathway interactionsPennsylvaniaPhenotypePremature aging syndromeProcessProteinsRAD23B geneResearchResearch PersonnelResearch Project GrantsResearch SupportResearch TrainingResistanceResolutionScienceSiteSolidSomatic MutationStressStructureSunlightSyndromeTechnologyTimeTorsionTrainingTrichothiodystrophyUltraviolet RaysUniversitiesXeroderma PigmentosumYeastsanti-cancer therapeuticbasebiophysical techniquescancer predispositioncancer therapycomputerized toolscrosslinkenvironmental mutagensgenome integrityglobal genomic repairmedical schoolsnovelnovel strategiesnovel therapeutic interventionreconstitutionrecruitrepairedsensorstructural biologysuccesssynergismthree dimensional structuretranscription factor S-IItranslocasetransmission processultraviolet lesionsundergraduate student
项目摘要
Project Summary:
Mechanisms of DNA damage processing and the initiation of Nucleotide Excision Repair
The goal of this research is to determine the structural mechanism of nucleotide excision repair
(NER) initiation. NER is the most versatile DNA repair mechanism that repairs a wide variety of
DNA lesions through a multistep process involving over 30 different proteins. Being essential to
maintaining genome integrity, this pathway is also highly conserved from yeast to humans.
Genetic defects in NER factors lead to phenotypes ranging from extreme cancer predisposition
syndrome (xeroderma pigmentosum) to severe neurodevelopmental defects (Cockayne
syndrome), thus providing a unique paradigm to understand diverse clinical outcomes of DNA
damage. Recent studies also revealed NER as a major contributor of somatic mutation hotspots
in various sporadic cancers and NER has been suggested as an attractive target for anti-cancer
therapy.
Despite its biological and medical importance, delineating the mechanisms of NER has been a
long-term challenge due to the complex compositions and functions of NER factors and the lack
of comprehensive structural understanding of their interplay on DNA. This proposal aims to define
the mechanism of NER initiation in detailed 3D structures using cryo-EM combined with time-
resolved fluorescence spectroscopy and crosslinking/mass-spectrometry. The outcome will
answer fundamental questions regarding (1) how the two key NER initiators, Rad4-Rad23-Rad33
(yeast homolog of XPC-RAD23B-CETN2) and TFIIH, together start the DNA ‘opening’ around the
damage - a critical step in NER initiation, and (2) how the torsional stress in DNA impacts this
process. This understanding will provide the foundation to explain various pathophysiologies
involving NER, which in turn can lead to novel strategies to counter various NER-linked diseases
including cancer.
Importantly, our research will provide solid training grounds for several undergraduate
researchers every year and will significantly enhance the biomedical research environment at
Baylor University, an undergraduate-focused institution, through its intimate collaboration with
UPenn Medical School. Immersed in an interdisciplinary research project with access to cutting-
edge technologies, our undergraduate researchers will gain expertise in various biochemical and
biophysical approaches and grow as key drivers of significant science.
项目概要:
DNA损伤处理机制和核苷酸切除修复的启动
本研究的目标是确定核苷酸切除修复的结构机制
(NER) 启动是最通用的 DNA 修复机制,可修复多种DNA。
DNA 损伤是通过涉及 30 多种不同蛋白质的多步骤过程实现的。
为了保持基因组完整性,该途径从酵母到人类也高度保守。
NER 因子的遗传缺陷导致从极端癌症易感性到各种表型
综合征(着色性干皮病)至严重神经发育缺陷(Cockayne
综合征),从而提供了一个独特的范例来理解 DNA 的不同临床结果
最近的研究还表明 NER 是体细胞突变热点的主要贡献者。
在各种散发性癌症中,NER 被认为是一个有吸引力的抗癌靶点
治疗。
尽管 NER 具有生物学和医学重要性,但描述 NER 的机制一直是一个难题。
由于 NER 因子的复杂组成和功能以及缺乏
该提案旨在对它们在 DNA 上的相互作用进行全面的结构理解。
使用冷冻电镜结合时间-在详细的 3D 结构中启动 NER 的机制
解析荧光光谱和交联/质谱的结果将。
回答有关 (1) 两个关键 NER 启动子 Rad4-Rad23-Rad33 如何进行的基本问题
(XPC-RAD23B-CETN2 的酵母同源物)和 TFIIH,一起启动围绕
损伤 - NER 启动的关键步骤,以及 (2) DNA 中的扭转应力如何影响这一步骤
这种理解将为解释各种病理生理学提供基础。
涉及 NER,这反过来又可以带来对抗各种 NER 相关疾病的新策略
包括癌症。
重要的是,我们的研究将为一些本科生提供坚实的训练基础
每年都有研究人员加入,并将显着改善生物医学研究环境
贝勒大学是一所以本科生为重点的机构,通过与
宾夕法尼亚大学医学院沉浸在一个跨学科研究项目中,可以接触到前沿技术。
边缘技术,我们的本科研究人员将获得各种生物化学和
生物物理方法并成为重要科学的关键驱动力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein.
人类 XPC 核苷酸切除修复蛋白遗传变异的结构建模和分析。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:4.4
- 作者:Le, Jennifer;Min, Jung
- 通讯作者:Min, Jung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jung-Hyun Min其他文献
Jung-Hyun Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
- 批准号:
10714543 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Personalized Organoid-Chip Model For Drug Testing in Pancreatic Cancer
用于胰腺癌药物测试的个性化类器官芯片模型
- 批准号:
10570699 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Dual targeting of cGAS-STING and splicing to prime lung cancer immunogenicity
cGAS-STING 和剪接的双重靶向以提高肺癌免疫原性
- 批准号:
10749760 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Role of miR-195 in Chemo-Resistant Ovarian Cancer
miR-195 在化疗耐药性卵巢癌中的作用
- 批准号:
10640540 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别: