Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
基本信息
- 批准号:10650781
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-20 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAfricanAgingAnimal ModelAntibodiesBig DataBiologyCellsCuesDNA Transposable ElementsDataDevelopmentDiseaseElementsFamilyFemaleGenerationsGeneticGenomeGenomicsGoalsGonadal HormonesHealthHomeostasisJumping GenesJunk DNAKillifishesLaboratory miceLifeLinkLongevityMachine LearningMalignant NeoplasmsMobile Genetic ElementsModelingMusNatureNerve DegenerationOrganismParasitesPatternPhysiologyRegulationResearchSex ChromosomesSomatic CellTimeTissuesValidationage relatedbiological sexcell typecost effectivenessfunctional declinefunctional genomicsmalemodel organismpreventprogramsresponsesexsexual dimorphism
项目摘要
Project summary
The overarching goal of my lab is to understand understudied mechanisms of genomic regulation, and how
they influence lifelong Vertebrate health and disease. In multi-cellular organisms, diverse cell types are
characterized by specific genomic regulation patterns, and the precise control of these patterns is key not only
for development, but also for cell/tissue homeostasis in adults. Indeed, loss of fine control in genomic regulation
has been linked to disease (e.g. cancer, neurodegeneration) and age-related functional decline. An interesting
and understudied family of genomic elements lies in dormant genetic parasites (e.g. transposons, also called
“jumping genes”). Although transposons can represent up to 80% of some eukaryotic genomes, they remain
critically understudied, since they were historically dismissed as unimportant (i.e. “junk DNA”), and their high
copy numbers and repetitive nature pose unique technical challenges. Consistent with their potential impact in
health and disease, the ability of cells to suppress transposon activity is disrupted with disease and with aging.
In addition, accumulating evidence suggests that many aspects of biology and genomic regulation differ between
males and females, including emerging data suggesting potential sex-dimorphism in transposon activity.
However, how transposable elements are regulated throughout life in healthy somatic tissues and
across biological sexes, and how they influence vertebrate health, remains largely unknown. Thus, we
propose to decipher how transposons are controlled in healthy somatic cells (including in male vs. female cells),
and how loss of that control could influence Vertebrate health and disease. To explore this question, my group
will use a unique combination of ‘omics’ approaches, machine-learning, and experimental validation in animal
models. We use two vertebrate models for their respective strengths: the laboratory mouse (e.g. powerful
genetics, validated antibodies, etc.) and the African turquoise killifish, a naturally short-lived model organism I
have helped develop (e.g. short generation time/lifespan, strain diversity, cost-effectiveness, etc.). First, we will
decipher sex-dimorphic regulation of transposon activity, determining the impact of gonadal hormones vs. sex-
chromosomes on such regulation. Second, we will use functional genomics to identify new regulators of
transposon activity in somatic cells. Finally, we will evaluate the impact of transposon control in key somatic
tissues and across sexes on lifelong vertebrate health using the naturally short-lived African turquoise killifish as
a model. Ultimately, understanding the fine control of transposon in healthy cells will help devise strategies to
prevent their misregulation in disease, by allowing us to maintain youthful and healthy genomic regulation
landscapes.
1
项目概要
我实验室的首要目标是了解基因组调控的尚未充分研究的机制,以及如何
它们影响脊椎动物的终生健康和疾病。在多细胞生物中,不同的细胞类型是不同的。
以特定的基因组调控模式为特征,对这些模式的精确控制不仅是关键
事实上,基因组调控的精细控制的丧失。
有趣的是,它与疾病(例如癌症、神经退行性疾病)和年龄相关的功能衰退有关。
尚未研究的基因组元件家族存在于休眠的遗传寄生虫中(例如转座子,也称为
尽管转座子可以代表高达 80% 的真核生物基因组,但它们仍然存在。
由于它们在历史上被视为不重要(即“垃圾 DNA”)而被遗弃,因此对其进行了严格的研究,并且它们的高
拷贝数和重复性带来了独特的技术挑战,这与其潜在的影响一致。
健康和疾病中,细胞抑制转座子活性的能力会因疾病和衰老而受到破坏。
此外,越来越多的证据表明,生物学和基因组调控的许多方面在不同物种之间存在差异。
男性和女性,包括表明转座子活动中潜在性别二态性的新数据。
然而,转座因子在健康体细胞组织的整个生命过程中是如何调节的?
因此,我们对跨生物性别以及它们如何影响脊椎动物健康仍然知之甚少。
提议破译转座子在健康体细胞(包括男性与女性细胞)中是如何控制的,
以及失去这种控制会如何影响脊椎动物的健康和疾病为了探索这个问题,我的小组。
将使用“组学”方法、机器学习和动物实验验证的独特组合
我们使用两种脊椎动物模型来发挥各自的优势:实验室小鼠(例如强大的)
遗传学、经过验证的抗体等)和非洲绿松石鳉鱼,一种自然寿命较短的模式生物 I
有助于发展(例如短世代时间/寿命、菌株多样性、成本效益等)。
破译转座子活性的性别二态性调节,确定性腺激素与性别的影响
其次,我们将利用功能基因组学来识别新的调控因子。
最后,我们将评估转座子控制对关键体细胞的影响。
使用自然寿命较短的非洲绿松石鳉鱼作为组织和跨性别对脊椎动物终生健康的影响
最终,了解健康细胞中转座子的精细控制将有助于制定策略。
通过让我们保持年轻和健康的基因组调控来防止它们在疾病中的错误调控
风景。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berenice Anath Benayoun其他文献
Berenice Anath Benayoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berenice Anath Benayoun', 18)}}的其他基金
Deciphering hormonal regulation of neutrophil biology
破译中性粒细胞生物学的激素调节
- 批准号:
10707917 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Deciphering hormonal regulation of neutrophil biology
破译中性粒细胞生物学的激素调节
- 批准号:
10412518 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
- 批准号:
10472059 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
- 批准号:
10265910 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
- 批准号:
10472059 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Transposable elements as drivers of normal and accelerated aging in Vertebrates
转座因子作为脊椎动物正常和加速衰老的驱动因素
- 批准号:
9794215 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Transposable elements as drivers of normal and accelerated aging in Vertebrates
转座因子作为脊椎动物正常和加速衰老的驱动因素
- 批准号:
9981604 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Regulation of transcriptional consistency by broad H3K4me3 domains in young cells and during aging
年轻细胞和衰老过程中广泛的 H3K4me3 结构域对转录一致性的调节
- 批准号:
9755277 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Regulation of transcriptional consistency by broad H3K4me3 domains in young cells and during aging
年轻细胞和衰老过程中广泛的 H3K4me3 结构域对转录一致性的调节
- 批准号:
8868834 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
- 批准号:
10662094 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Exercise adherence and cognitive decline: Engaging with the Black community to develop and test a goal-setting and exercise intensity intervention
运动坚持和认知能力下降:与黑人社区合作制定和测试目标设定和运动强度干预措施
- 批准号:
10767102 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Measuring stress and epigenetic aging among Black older adults in community-based longitudinal studies of aging
在基于社区的衰老纵向研究中测量黑人老年人的压力和表观遗传衰老
- 批准号:
10653606 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Investigators from Novices, a Transdisciplinary Research Education Program to Increase Diversity (INTREPID) in Aging Research
新手研究人员,一项旨在增加衰老研究多样性的跨学科研究教育计划 (INTREPID)
- 批准号:
10625709 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Earlier-Life Predictors of Midlife Risk Factors for Dementia: A 35-Year Follow-up
中年痴呆症风险因素的早期预测因素:35 年随访
- 批准号:
10596295 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别: