Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
基本信息
- 批准号:10651389
- 负责人:
- 金额:$ 72.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmygdaloid structureAnterolateralArchitectureAreaAtlasesBehaviorBehavioralBehavioral ParadigmBiologicalBrainCalciumCellsCensusesCharacteristicsCognitionCognitiveCognitive deficitsComplexCouplingDataDecision MakingDiseaseDissectionEating DisordersExhibitsFunctional disorderGenesGenomeGoalsHumanImageImpaired cognitionInterneuronsInteroceptionInterventionKnowledgeLinkLocationMajor Depressive DisorderMapsMediatingMental disordersMethodsMolecularMolecular ProfilingMotorMotor CortexMovementMusNeuronsOdorsParietal LobeParvalbuminsPathologyPathway interactionsPatternPopulation DynamicsPost-Traumatic Stress DisordersPrefrontal CortexPreparationPrimatesProcessResearchRewardsRoleSamplingShort-Term MemorySomatostatinSourceStimulusStructureSystemTaxonomyTestingTracerTranslatingTransplantationVasoactive Intestinal PeptideWorkaddictionbrain pathwaycell cortexcell typecognitive functiondata to knowledgeendophenotypeexcitatory neuronexpectationexperimental studyhippocampal pyramidal neuronin vivoin vivo imagingindividual responseinhibitory neuroninnovationinsightmotor controlneuralneural circuitneuromechanismnew technologynonhuman primatenoveloptogeneticsresponsesensory stimulussingle-cell RNA sequencingtooltranscriptomics
项目摘要
There is a fundamental gap in understanding how the diversity of cortical cell types and connectivity patterns
translates into functional dynamics of the circuits to support cognitive behaviors. This knowledge gap hampers
our understanding of the dysfunctions of decision making and other debilitating cognitive abnormalities
associated with most psychiatric illnesses, including addiction, major depression, and eating disorders. My long-
term goal is to unravel the intricate link from genes to circuits and to systems and reveal the pathology,
pathophysiology, and behavioral deficits involved in mental disorders at the level of specific circuits and their
cellular constituents. This proposal aims to determine how the genome instructs the organization and function of
the premotor cortex to support decision making. The premotor cortex in mice resembles those of the non-human
primates and humans, illustrating their evolutionarily conserved role in higher-level cognitive functions. In
addition, we have developed behavior paradigms in mice to permit the dissection of neural circuits underlying
complex behaviors using the powerful molecular tools unavailable in many other species. The central hypothesis
is that molecular signatures and connectivity patterns collectively drive premotor cortex neurons to acquire
distinct functions to support decision making. This hypothesis has been formulated based on previous work and
the preliminary data produced by the applicants. The rationale for the proposed research is that this study will
provide a new target brain area together with specific cell types and pathways for understanding and treating the
cognitive deficits implicated in psychiatric illnesses. This hypothesis will be tested by pursuing two specific aims:
1) Determine the function of the molecular cell types of the premotor cortex in decision making; and 2) Establish
the functional role of the afferent inputs of the premotor cortex. Under the first aim, the neural responses of
individual neurons will be mapped to their molecular identity by coupling in vivo imaging and spatial
transcriptomics. Further, the molecular identity will be manipulated to determine their causal contribution to
function. Next, the molecular identity and function of premotor cortex neurons defined by specific afferent inputs
will be established by single-cell RNA sequencing and imaging during decision making. The functional role of
these afferent inputs will be further characterized by pathway-specific optogenetic manipulations. This approach
is innovative because it combines in vivo imaging with spatial transcriptomics and utilizes transplantation
methods and the latest circuit mapping tools to reveal the novel, cognitive role of the premotor circuit in decision
making. This proposed research is significant because it answers the long-standing question about the structure
and function of cortical circuits: How do neurons of distinct identities connect and interact to produce network
dynamics underlying higher-level cognition. Ultimately, such knowledge has the potential to reveal the specific
cell types and brain pathways underlying decision making and to better understand, intervene, and treat
dysfunctions of decision making that are prevalent in psychiatric illnesses.
在理解皮质细胞类型和连接模式的多样性如何
转化为电路的功能动力学以支持认知行为。这种知识差距阻碍了
我们对决策功能障碍和其他使人衰弱的认知异常的理解
与大多数精神疾病有关,包括成瘾、重度抑郁症和饮食失调。我的长-
术语目标是阐明从基因到电路和系统的复杂联系并揭示病理学,
与特定回路及其水平的精神障碍有关的病理生理学和行为缺陷
细胞成分。该提案旨在确定基因组如何指导细胞的组织和功能
前运动皮层支持决策。小鼠的前运动皮质与非人类的相似
灵长类动物和人类,说明了它们在高级认知功能中进化上保守的作用。在
此外,我们还开发了小鼠的行为范例,以允许解剖潜在的神经回路
使用许多其他物种无法使用的强大分子工具来进行复杂的行为。中心假设
是分子特征和连接模式共同驱动前运动皮层神经元获得
支持决策的不同功能。这个假设是根据之前的工作和
申请人提供的初步数据。拟议研究的基本原理是,本研究将
提供一个新的目标大脑区域以及特定的细胞类型和途径来理解和治疗
与精神疾病有关的认知缺陷。该假设将通过追求两个具体目标来检验:
1)确定前运动皮层分子细胞类型在决策中的功能; 2) 建立
前运动皮层传入输入的功能作用。在第一个目标下,神经反应
通过结合体内成像和空间成像,将单个神经元映射到其分子身份
转录组学。此外,将操纵分子身份来确定它们对
功能。接下来,由特定传入输入定义的前运动皮层神经元的分子身份和功能
将在决策过程中通过单细胞 RNA 测序和成像来确定。的功能作用
这些传入输入将通过特定路径的光遗传学操作进一步表征。这种做法
具有创新性,因为它将体内成像与空间转录组学相结合并利用移植
方法和最新的电路映射工具揭示前运动电路在决策中的新颖的认知作用
制作。这项研究意义重大,因为它回答了有关结构的长期存在的问题
皮质回路和功能:不同身份的神经元如何连接和相互作用以产生网络
更高层次认知的动力。最终,这些知识有可能揭示具体的
细胞类型和大脑通路是决策的基础,可以更好地理解、干预和治疗
精神疾病中普遍存在的决策功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Herbert Wu其他文献
Zheng Herbert Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
慢性应激差异化调控杏仁核神经元突触结构的机制研究
- 批准号:81960257
- 批准年份:2019
- 资助金额:33.7 万元
- 项目类别:地区科学基金项目
FMR1NB基因多态性和男性同性恋杏仁核结构和功能的相关性研究
- 批准号:81671357
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
不同亚型功能性消化不良杏仁核环路的脑功能及结构磁共振成像研究
- 批准号:81671672
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
视网膜直接投射到杏仁核的神经通路结构和功能研究
- 批准号:31571091
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Oxytocin Modulation of CRF Neurons in the BNST: Implications for Anxiety
催产素对 BNST 中 CRF 神经元的调节:对焦虑的影响
- 批准号:
8457613 - 财政年份:2012
- 资助金额:
$ 72.41万 - 项目类别:
Oxytocin Modulation of CRF Neurons in the BNST: Implications for Anxiety
催产素对 BNST 中 CRF 神经元的调节:对焦虑的影响
- 批准号:
8551403 - 财政年份:2012
- 资助金额:
$ 72.41万 - 项目类别:
Oxytocin Modulation of CRF Neurons in the BNST: Implications for Anxiety
催产素对 BNST 中 CRF 神经元的调节:对焦虑的影响
- 批准号:
8723883 - 财政年份:2012
- 资助金额:
$ 72.41万 - 项目类别:
Periadolescent Noradrenergic Regulation in the BNST
BNST 的青春期去甲肾上腺素能调节
- 批准号:
7474118 - 财政年份:2004
- 资助金额:
$ 72.41万 - 项目类别:
Periadolescent Noradrenergic Regulation in the BNST
BNST 的青春期去甲肾上腺素能调节
- 批准号:
7268809 - 财政年份:2004
- 资助金额:
$ 72.41万 - 项目类别: