Therapeutic nanoscale matrimeres
治疗性纳米级基质
基本信息
- 批准号:10650665
- 负责人:
- 金额:$ 44.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherens JunctionAffinityAgonistAutophagocytosisAutophagosomeBiocompatible MaterialsBiodistributionBiogenesisBioinformaticsBiologyBlood VesselsCell CommunicationCell secretionCellsCellular biologyChemicalsChromatinComplexDNADataDeoxyribonuclease IDevelopmentDiseaseEdemaElastic TissueElasticityEndothelial CellsEndotheliumEndotoxemiaEngineeringEnvironmentExtracellular MatrixExtracellular Matrix ProteinsExtravasationFailureFibronectinsFibrosisGeneticGenomic DNAGoalsGuanine + Cytosine CompositionHistonesHydrogelsImageInflammatoryInjuryIntegrinsLengthLipopolysaccharidesLungLysosomesMediatingMediatorMolecular BiologyMolecular ConformationMonomeric GTP-Binding ProteinsMusNanostructuresNanotechnologyNatural regenerationOrganOutcomePTK2 geneParacrine CommunicationPathway interactionsPermeabilityPhysiologicalPlayProcessProductionPropertyProteinsRGD (sequence)RecyclingResearch PersonnelReverse engineeringRoleRouteSignal PathwaySignal TransductionSonicationStructure of parenchyma of lungTestingTherapeuticTissuesTraumaVascular PermeabilitiesVascularizationWorkcadherin 5designextracellular vesiclesimprovedin vivoinjuredinsightinterdisciplinary approachlung injurymacromoleculemembermesenchymal stromal cellmultidisciplinarynanomedicinenanoparticlenanoparticle deliverynanoscalenovelparacrinepharmacologicpreventpublic health relevancereconstitutionregenerativesuccesssynthetic constructsynthetic peptidetissue injury
项目摘要
PROJECT SUMMARY
The extracellular matrix in tissue is significantly disrupted in many disease conditions, but it is essential for
cells to function. Endothelial cells become leaky when they no longer receive functional matrix signals upon
tissue injury. Failure to restore endothelial barrier function can result in persistent edema, long-term tissue
damage, and irreversible tissue fibrosis. Since many organs are highly vascularized, there is a need to find a
general solution to treat tissue injury by restoring matrix-mediated signaling. There is currently no effective
strategy to achieve this goal, since the activation of matrix signaling pathways requires the delivery of matrix
molecules with proper molecular conformation and physiochemical properties. Here, we define a novel class of
cell-secreted, non-vesicular nanoparticles that bear matrix molecules, which we call matrimeres. Our
preliminary data show that mesenchymal stromal cells naturally secrete matrimeres consisting of fibronectin
and DNA, which can directly activate endothelial cells to restore junctions disrupted by endotoxemia-induced
injury. Importantly, we show that functional matrimeres can be reconstituted from purified fibronectin protein
and genomic DNA fragments in a chemical environment similar to secretory compartments in cells. We will
build on these results to test the hypothesis that fibronectin matrimeres treat tissue injury by restoring
endothelial barrier function. In Aim 1, we will determine how fibronectin matrimeres restore endothelial barrier
function after inflammatory injury in the lungs. In Aim 2, we will investigate biogenesis mechanisms of
fibronectin matrimeres in mesenchymal stromal cells. In Aim 3, we will engineer synthetic matrimeres that
restore endothelial barrier function. We predict that highly functional nanomedicine can be developed based on
the fundamental insight that cells are able to recycle and repackage matrix molecules into nanoparticles by
complexing with DNA fragments, which circulate in the body and play a homeostatic role in limiting vascular
permeability. The project is highly multidisciplinary in that it will employ a combination of expertise in nanoscale
biology, nanotechnology, chemical, biomaterials, computational, advanced imaging, cellular and molecular
biology, and in vivo approaches to address the specific aims. The results will help develop a number of
fundamental concepts of matrimeres in terms of their mechanisms of action, biogenesis, and reverse
engineering. Success of the project will also enable the generalization of matrimeres as natural nanomedicine
to deliver macromolecules for improved regenerative outcomes.
项目概要
在许多疾病条件下,组织中的细胞外基质被显着破坏,但它对于维持生命至关重要
细胞发挥功能。当内皮细胞不再接收功能性基质信号时,它们就会发生渗漏。
组织损伤。未能恢复内皮屏障功能可导致持续性水肿、长期组织
损伤和不可逆的组织纤维化。由于许多器官的血管化程度很高,因此需要找到一种
通过恢复基质介导的信号传导来治疗组织损伤的通用解决方案。目前尚无有效的
策略来实现这一目标,因为基质信号通路的激活需要基质的传递
具有适当分子构象和理化性质的分子。在这里,我们定义了一个新颖的类
细胞分泌的非囊泡纳米颗粒,带有基质分子,我们称之为基质分子。我们的
初步数据表明间充质基质细胞自然分泌由纤连蛋白组成的基质细胞
和DNA,它可以直接激活内皮细胞以恢复内毒素血症引起的破坏的连接
受伤。重要的是,我们证明功能性基质可以由纯化的纤连蛋白重建
和基因组 DNA 片段在类似于细胞分泌室的化学环境中。我们将
基于这些结果来检验纤连蛋白基质通过恢复来治疗组织损伤的假设
内皮屏障功能。在目标 1 中,我们将确定纤连蛋白基质如何恢复内皮屏障
肺部炎症损伤后的功能。在目标 2 中,我们将研究生物发生机制
间充质基质细胞中的纤连蛋白基质。在目标 3 中,我们将设计合成基质,
恢复内皮屏障功能。我们预测可以基于以下基础开发高功能纳米医学
细胞能够通过以下方式将基质分子回收并重新包装成纳米颗粒:
与 DNA 片段复合,在体内循环并在限制血管中发挥稳态作用
渗透性。该项目是高度多学科的,因为它将结合纳米级的专业知识
生物学、纳米技术、化学、生物材料、计算、高级成像、细胞和分子
生物学和体内方法来解决特定目标。研究结果将有助于开发一系列
基质的基本概念,包括其作用机制、生物发生和逆转
工程。该项目的成功还将促进基质作为天然纳米药物的推广
提供大分子以改善再生结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae-Won Shin其他文献
Jae-Won Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae-Won Shin', 18)}}的其他基金
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10548197 - 财政年份:2021
- 资助金额:
$ 44.77万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10181469 - 财政年份:2021
- 资助金额:
$ 44.77万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10582026 - 财政年份:2021
- 资助金额:
$ 44.77万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10370437 - 财政年份:2021
- 资助金额:
$ 44.77万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
10372942 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
10598507 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
10132377 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Encapsulation of mesenchymal stromal cells in engineered microgels for resolution of lung fibrosis
将间充质基质细胞封装在工程微凝胶中以解决肺纤维化
- 批准号:
9894836 - 财政年份:2019
- 资助金额:
$ 44.77万 - 项目类别:
Mechanically controlled release of hematopoietic factors from mesenchymal stromal cells for blood regeneration
机械控制间充质基质细胞释放造血因子用于血液再生
- 批准号:
8805621 - 财政年份:2014
- 资助金额:
$ 44.77万 - 项目类别:
Mechanically controlled release of hematopoietic factors from mesenchymal stromal cells for blood regeneration
机械控制间充质基质细胞释放造血因子用于血液再生
- 批准号:
8979703 - 财政年份:2014
- 资助金额:
$ 44.77万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Obscurin-kinase 1/N-cadherin: a new signaling axis in cardiac structure/function
暗蛋白激酶 1/N-钙粘蛋白:心脏结构/功能中的新信号轴
- 批准号:
10677738 - 财政年份:2022
- 资助金额:
$ 44.77万 - 项目类别:
Obscurin-kinase 1/N-cadherin: a new signaling axis in cardiac structure/function
暗蛋白激酶 1/N-钙粘蛋白:心脏结构/功能中的新信号轴
- 批准号:
10532967 - 财政年份:2022
- 资助金额:
$ 44.77万 - 项目类别:
Cadherin-catenin regulation in dividing epithelial cells
分裂上皮细胞中钙粘蛋白-连环蛋白的调节
- 批准号:
10194544 - 财政年份:2018
- 资助金额:
$ 44.77万 - 项目类别:
Molecular mechanisms underlying force sensing at intercellular junctions
细胞间连接处力传感的分子机制
- 批准号:
9281753 - 财政年份:2016
- 资助金额:
$ 44.77万 - 项目类别: