Bioengineered Substrata to Probe Cellular Behavior
用于探测细胞行为的生物工程基质
基本信息
- 批准号:7555766
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-22 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAmericanAngioplastyAntibodiesArterial Occlusive DiseasesAtomic Force MicroscopyAttentionBackBehaviorBiochemicalBiological ModelsBiomechanicsBiomedical EngineeringBlood VesselsCell LineCell ProliferationCellsCellular biologyClassificationCollaborationsCollagenCollagen Type ICoupledCrosslinkerCytoskeletal ProteinsCytoskeletonDepositionDimensionsDominant-Negative MutationEngineeringEnvironmentExhibitsExtracellular MatrixExtracellular Matrix ProteinsFamilyFocal Adhesion Kinase 1GelGoalsGuanosine Triphosphate PhosphohydrolasesHydrogelsHyperplasiaImageImmunofluorescence ImmunologicInjuryIntegrinsLeadLengthLettersLocationMapsMatrix MetalloproteinasesMechanicsMethodsMicrofluidicsMicroscopicModelingMolecularMorphologyNumbersOutcomes ResearchPTK2 genePhenotypePhosphorylationPhosphotyrosinePlayProcessProductionPropertyProteoglycanRangeResearchResearch PersonnelRoleSignaling MoleculeSmooth Muscle MyocytesSpeedStentsStressSubstrate InteractionSystemTechniquesTestingTimeTractionVariantVascular GraftVascular Smooth MuscleVascular remodelingVideo MicroscopyWestern BlottingWorkantibody inhibitorbasecell behaviorcell motilityclinically significantdesignfeedingin vitro Modelinsightintracellular protein transportmonomermouse Smc1l1 proteinmouse Smc1l2 proteinnovelpaxillinphotopolymerizationprogramsprotein expressionprotein localization locationresponserestenosisrhorho GTP-Binding Proteinssuccesstime usevasoconstriction
项目摘要
Restenosis due to intimal hyperplasia and vasoconstriction remains a major problem in treatments of arterial
occlusive disease. Smooth muscle cells play a major role in vascular remodeling, and local control of their
cellular phenotype would greatly enhance efforts to reduce the occurrence of restenosis. A common result of
vascular injury is excessive remodeling of the extracellular matrix, which becomes rich in collagens and
proteoglycans. While this leads to changes in biochemical properties, it also significantly alters
biomechanical properties. Based on recent work that cells respond to substrata with varying mechanical
properties, our central hypothesis is that the biomechanical properties of the substratum will modulate
vascular smooth muscle cell cellular phenotype that is relevant for restenosis. Current therapies for restenosis
largely involve soluble factors, but little attention has been focused on understanding the effects of substratum
biomechanical properties on cellular phenotype. The objective of the proposed research is to create model
systems that will recapitulate the biomechanical environment during vascular remodeling and to identify key
relationships between substrate compliance and cellular phenotype associated with restenosis. This objective
will be achieved by investigating the effect of substrate compliance on the cellular phenotype of smooth
muscle cells on model bioengineered substrata that are designed to exhibit a systematic variation in their
compliance ranging from the microscopic to macroscopic length scales. The outcome of this research will be
a novel in vitro model system that will more closely mimic the biomechanical environment of the remodeled
matrix in which one can test the effects of agents on vascular smooth muscle cell phenotype. This model
system can also be applied to other pathophysiologic systems.
Synthetic hydrogels will be used as model substrata in order to control the local mechanical compliance. Aim
1 is to develop bioengineered substrata with well-defined mechanical compliance at the macro- and micro-
scales. Results from studies in Aims 2 and 3 will be used in the refinement of Aim 1. Aim 2 will establish and
quantify relationships between substrate compliance and vascular smooth muscle cell phenotypes associated
with restenosis. Aim 3 will test the effects of substrate compliance on the expression, localization, and
activity of putative mechanosensing cellular components (integrins, cytoskeleton, FAK, paxillin, Rho
GTPases). These studies will advance new insights on the physical factors that control phenotypic modulation
of vascular smooth muscle cells with the aim of developing therapies to block restenosis.
由于内膜增生和血管收缩引起的再狭窄仍然是动脉治疗的主要问题
闭塞性疾病。平滑肌细胞在血管重塑中起主要作用,局部控制其
细胞表型将极大地加强减少再狭窄的努力。一个常见的结果
血管损伤是细胞外基质的过度重塑,该基质富含胶原蛋白和
蛋白聚糖。尽管这导致生化特性的变化,但也显着改变
生物力学特性。基于最近的工作,细胞对基质有不同的机械响应
属性,我们的中心假设是底层的生物力学特性会调节
血管平滑肌细胞细胞表型与再狭窄相关。当前的再狭窄疗法
很大程度上涉及可溶性因素,但很少关注理解基质的影响
细胞表型上的生物力学特性。拟议研究的目的是创建模型
在血管重塑过程中会概括生物力学环境并识别钥匙的系统
与再狭窄相关的底物合规性与细胞表型之间的关系。这个目标
将通过研究底物符合对光滑细胞表型的影响来实现
模型生物工程基质上的肌肉细胞旨在在其系统上表现出系统变化
从显微镜到宏观长度尺度的合规性。这项研究的结果将是
一种新型的体外模型系统,将更加模仿重塑的生物力学环境
基质可以测试药物对血管平滑肌细胞表型的影响。这个模型
系统也可以应用于其他病理生理系统。
合成水凝胶将用作模型基质,以控制局部机械依从性。目的
1是在宏观和微观方面开发具有明确机械符合性的生物工程基质
秤。 AIM 2和3中研究的结果将用于AIM 1的完善。AIM 2将建立和
量化底物合规性与血管平滑肌细胞表型之间的关系
与再狭窄。 AIM 3将测试底物遵守对表达,本地化和
推定的机械感应细胞成分(整联蛋白,细胞骨架,FAK,Paxillin,Rho)的活性
GTPases)。这些研究将提高对控制表型调节的物理因素的新见解
血管平滑肌细胞的旨在开发疗法以阻断再狭窄。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOYCE Y WONG其他文献
JOYCE Y WONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOYCE Y WONG', 18)}}的其他基金
2011 Biomaterials & Tissue Engineering Gordon Research Conference
2011年生物材料
- 批准号:
8126862 - 财政年份:2011
- 资助金额:
$ 4.44万 - 项目类别:
Vascular Cell Phenotype on Physiologically-relevant Bioengineered Substrata
生理相关生物工程基质上的血管细胞表型
- 批准号:
7842070 - 财政年份:2009
- 资助金额:
$ 4.44万 - 项目类别:
Bioengineered Substrata to Probe Cellular Behavior
用于探测细胞行为的生物工程基质
- 批准号:
7060677 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Bioengineered Substrata to Probe Cellular Behavior
用于探测细胞行为的生物工程基质
- 批准号:
6941688 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Vascular Cell Phenotype on Physiologically-relevant Bioengineered Substrata
生理相关生物工程基质上的血管细胞表型
- 批准号:
8079713 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Vascular Cell Phenotype on Physiologically-relevant Bioengineered Substrata
生理相关生物工程基质上的血管细胞表型
- 批准号:
7672785 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Vascular Cell Phenotype on Physiologically-relevant Bioengineered Substrata
生理相关生物工程基质上的血管细胞表型
- 批准号:
7872972 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Bioengineered Substrata to Probe Cellular Behavior
用于探测细胞行为的生物工程基质
- 批准号:
7124176 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Bioengineered Substrata to Probe Cellular Behavior
用于探测细胞行为的生物工程基质
- 批准号:
6803034 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
Vascular Cell Phenotype on Physiologically-relevant Bioengineered Substrata
生理相关生物工程基质上的血管细胞表型
- 批准号:
7919113 - 财政年份:2003
- 资助金额:
$ 4.44万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
- 批准号:
10754079 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
- 批准号:
10606952 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别: