Center for Structural Biology of HIV RNA
HIV RNA结构生物学中心
基本信息
- 批准号:10641988
- 负责人:
- 金额:$ 81.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-09 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:5&apos Untranslated RegionsAlternative SplicingBindingBinding ProteinsBiologicalBudgetsCell NucleusCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexDNA Polymerase IIDimerizationElementsEventGene ExpressionGene SilencingGeneticGenetic TranscriptionGrowthGuide RNAHIVHIV-1Human ResourcesIntegration Host FactorsInterventionInvestigationKnock-outLaboratoriesLeadLibrariesLife Cycle StagesLocationLyticMaintenanceMediatingMessenger RNAMethodsModelingModificationMonitorMutagenesisNuclear ExportNuclear PorePhasePlayPolymerasePositive Transcriptional Elongation Factor BProcessProtein PrecursorsProteinsProteomeProvirusesRNARNA BindingRNA Polymerase IIRNA PrecursorsRNA ProbesRNA SplicingRNA chemical synthesisRegulationRegulatory ElementResearch PersonnelRibosomal FrameshiftingRoleSiteStructureT memory cellT-LymphocyteTechnologyTimeTranscriptTranscription ElongationTranscriptional RegulationTranslationsViralViral GenesVirusVirus InhibitorsVirus ReplicationWorkcis acting elementdesignexperienceinterestmRNA Exportmembernovelprotein complexscreeningskillssmall moleculestructural biologytat Proteintooltraffickingviral DNAviral RNA
项目摘要
This Project consists of a deep analysis of the structures that form on HIV-1 RNAs in infected cells, the viral and
host proteins with which they interact, and the critical roles these structures play in HIV-1 gene expression. The
virus uses specific RNA structures to regulate gene expression, but in many cases the actual folded structures
of the RNAs and of the larger complexes they form with proteins are not yet known in any detail. We have
assembled a powerful team of investigators with the broad range of skills and expertise needed to determine the
structures, to define the essential portions of the RNAs needed for biological activity, and to unravel the
mechanism of action of the RNA-protein complexes that promote virus gene expression and replication. The
steps of the viral life cycle that we propose to examine will include: the synthesis of RNA transcripts by RNA
polymerase II elongation, as allowed by the release from arrest mediated by the Tat protein, P-TEFb subunits
and the TAR RNA; the alternative splicing of HIV-1 RNAs, as controlled by cis-acting elements at the splice sites
of the viral precursor RNA; the selective nuclear export of spliced, partially spliced and unspliced mRNAs as
controlled by Rev action at the RRE element and by nuclear pore subunits; and the translation of viral mRNAs,
including the role of the 5' cap in determining the fate of the RNAs, and the activity of the RNA hairpin at the site
of translational frameshifting in regulating expression of the long Gag-Pro-Pol precursor protein. We will study
structures of “naked” RNAs in solution, but also in the context of RNA-protein complexes as they exist in intact
infected cells. We will use powerful genetic tools and rapid readouts of gene expression to identify host factors
involved in these various processes, mutagenesis and CRISPR-based knockouts to probe the functions of these
factors and the details of their interactions with RNA. We have come to appreciate that many of the RNA
structures are highly dynamic and consist of a constellation of alternative forms – clearly true in the cases of the
TAR element, the 5' cap and 5' UTR sequence that control RNA utilization, the splicing regulatory elements, and
the translational frameshift element. Our team will apply advanced methods capable of monitoring these dynamic
rearrangements at multiple time scales. The results will break new ground in discovery, design, and optimization
of viral inhibitors targeting RNA. We initially will address all these RNA structures and their functions in the
context of the actively replicating virus in lytic growth in T cells, readily studied in culture. In addition, we are
interested in the distinctive regulation of these steps that occurs in the establishment and maintenance of latency,
a state allowing persistence of virus as transcriptionally silent proviruses. We will take advantage of a new model
of latency to define changes in the RNA structures and the way they are recognized by the altered proteome of
the memory T cell. The multiple investigators in this Project are experienced, highly focused on the issues, and
prepared to make rapid progress on each Aim outlined for the Project.
该项目包括对受感染细胞、病毒和 HIV-1 RNA 上形成的结构进行深入分析。
与其相互作用的宿主蛋白,以及这些结构在 HIV-1 基因表达中发挥的关键作用。
病毒使用特定的RNA结构来调节基因表达,但在许多情况下实际的折叠结构
我们还不清楚 RNA 以及它们与蛋白质形成的更大复合物的任何细节。
组建一支强大的调查人员团队,拥有确定问题所需的广泛技能和专业知识
结构,定义生物活性所需的 RNA 的基本部分,并解开
促进病毒基因表达和复制的RNA-蛋白质复合物的作用机制。
我们建议检查的病毒生命周期的步骤将包括: RNA 合成 RNA 转录本
聚合酶 II 延伸,由 Tat 蛋白、P-TEFb 亚基介导的停滞释放所允许
和 TAR RNA;HIV-1 RNA 的选择性剪接,由剪接位点的顺式作用元件控制
病毒前体RNA;剪接、部分剪接和未剪接的mRNA的选择性核输出
由 RRE 元件的 Rev 作用和核孔亚基以及病毒 mRNA 的翻译控制;
包括 5' 帽在决定 RNA 命运中的作用,以及该位点 RNA 发夹的活性
我们将研究翻译移码在调节长 Gag-Pro-Pol 前体蛋白表达中的作用。
溶液中“裸露”RNA 的结构,以及 RNA-蛋白质复合物的结构,因为它们以完整的形式存在
我们将使用强大的遗传工具和基因表达的快速读数来识别宿主因素。
参与这些不同的过程、诱变和基于 CRISPR 的敲除,以探究这些过程的功能
我们已经认识到许多 RNA 因素及其与 RNA 相互作用的细节。
结构是高度动态的,由一系列替代形式组成——在以下情况下显然是这样的:
TAR 元件、控制 RNA 利用的 5' 帽和 5' UTR 序列、剪接调节元件以及
我们的团队将应用能够监控这些动态的先进方法。
多个时间尺度的重新排列结果将在发现、设计和优化方面开辟新天地。
我们首先将解决所有这些 RNA 结构及其功能。
此外,我们还很容易在培养物中研究病毒在 T 细胞中裂解生长的情况。
对建立和维持潜伏期时发生的这些步骤的独特监管感兴趣,
允许病毒作为转录沉默原病毒持续存在的状态我们将利用一种新模型。
潜伏期来定义 RNA 结构的变化以及它们被蛋白质组识别的方式
该项目的多名研究人员经验丰富,高度关注这些问题,并且
准备在项目概述的每个目标上取得快速进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALICE TELESNITSKY其他文献
ALICE TELESNITSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALICE TELESNITSKY', 18)}}的其他基金
相似海外基金
The role of U1 snRNP proteins in snRNP biogenesis and gene expression regulation
U1 snRNP 蛋白在 snRNP 生物发生和基因表达调控中的作用
- 批准号:
10796664 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
Scope and mechanism of coordinated alternative splicing and alternative polyadenylation
协调选择性剪接和选择性多腺苷酸化的范围和机制
- 批准号:
10797150 - 财政年份:2022
- 资助金额:
$ 81.51万 - 项目类别:
Scope and mechanism of coordinated alternative splicing and alternative polyadenylation
协调选择性剪接和选择性多腺苷酸化的范围和机制
- 批准号:
10606477 - 财政年份:2022
- 资助金额:
$ 81.51万 - 项目类别:
Scope and mechanism of coordinated alternative splicing and alternative polyadenylation
协调选择性剪接和选择性多腺苷酸化的范围和机制
- 批准号:
10390365 - 财政年份:2020
- 资助金额:
$ 81.51万 - 项目类别: