Subcellular Response to Local Forces
亚细胞对局部力的反应
基本信息
- 批准号:7682292
- 负责人:
- 金额:$ 33.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdhesionsAreaArteriosclerosisBiochemicalBiologicalBlood VesselsCell physiologyCellsCellular biologyClinicalCollaborationsContractsCultured CellsCytoskeletonDevelopmentDifferentiation and GrowthDiseaseDisease ProgressionElastomersExploratory/Developmental GrantExtracellular MatrixFocal AdhesionsFoundationsFutureGene ExpressionGlobal ChangeGoalsHypertensionIndividualInflammationInterphase CellJointsKnowledgeLeadLinkMagnetismMapsMeasurementMeasuresMechanical StimulationMechanical StressMechanicsMediatingMicrofabricationNanotechnologyPathway interactionsPennsylvaniaPlayPostdoctoral FellowProcessPropertyPublicationsPulmonary artery structureReportingResearchResearch DesignResearch PersonnelRoleShapesSignal TransductionSiteSmooth Muscle MyocytesStressStructureSupervisionSurfaceSystemTechniquesTissuesTorqueTractionTransduction GeneUniversitiesVascular DiseasesWorkbasecellular transductionexperienceflexibilitygraduate studentinsightmagnetic beadsmagnetic fieldnanoengineeringnanoscalenovelparticleprofessorpublic health relevanceresearch studyresponseretinal rodstool
项目摘要
DESCRIPTION (provided by applicant): This project focuses on the role that sub-cellular forces experienced at sites of adhesion between cells and their extracellular matrix play in regulating vascular smooth muscle cell organization and function. The adaptive process by which cells spatially resolve and respond to such localized forces is critical to adhesion remodeling, where cells reinforce specific adhesions while disassembling others, and is relevant to many mechanically-mediated disease processes such as the hypertension-induced hyperproliferative response of vascular smooth muscle cells that exacerbates vascular disease. Previous work in this area has shown that focal adhesions assemble in response to forces applied to them, but because adhesion to extracellular matrix also induces biochemical signals that trigger global cell contractility, it remains unclear whether forces applied to a specific adhesion result in any mechanical crosstalk with remaining adhesions distributed throughout the cell. This project will combine the expertise of two investigators to employ a new technique that simultaneously allows local mechanical stimulation of the adherent surface of a cell and spatially-resolved measurement of the local force fields generated throughout the cell in response to this stimulation. It is proposed that the relationship between local stimulation and global mechanical response is critical to the mechanical coordination within the cytoskeleton required for transduction of force into a meaningful response. The two investigators have recently developed a technique wherein deflections of an array of microfabricated posts report the cytoskeletal tension and local force fields generated by a cell attached to the array, and nanoengineered magnetic material embedded in individual posts is used to exerting tunable sub-cellular mechanical stresses to attached cells. Thus, cells can be locally perturbed at one post while the surrounding posts simultaneously measure the effects of this stimulation. Specific Aim 1 of the project will be to apply well- defined forces at the nanonewton level to individual adhesions in cells, and to measure the global response of a cell in terms of changes in contractility and the structure of focal adhesions. Specific Aim 2 will be to determine the role of adhesion signaling in the mechanical response to forces. Specific Aim 3 will be to investigate the role of the changes in cytoskeletal tension in regulating the focal adhesion response to forces. The experiments made possible by this novel technique will lead to new understanding of how mechanical stresses are transduced by cells into an adaptive, coordinated cytoskeletal response, and will open a pathway toward new insights into the mechanisms of mechanotransduction critical for inflammation, proliferation, and tissue development. PUBLIC HEALTH RELEVANCE: This research will apply recent advances in magnetic micro- and nanotechnology to study the response of vascular cells to force and mechanical stress. When cells in blood vessels are subject to abnormal stresses, such as occur in hypertensive arteriosclerosis, they display abnormal physical and biochemical responses that can further the progression of the disease. This research will provide new insight into these processes at the cellular level, and will have the potential to contribute significantly to the understanding of vascular disease.
描述(由申请人提供):该项目重点研究细胞与其细胞外基质之间的粘附位点所经历的亚细胞力在调节血管平滑肌细胞组织和功能中所起的作用。细胞在空间上解析和响应此类局部力的适应性过程对于粘附重塑至关重要,其中细胞在分解其他粘附的同时增强特定粘附,并且与许多机械介导的疾病过程相关,例如高血压诱导的血管平滑肌过度增殖反应加剧血管疾病的肌肉细胞。该领域的先前工作表明,粘着斑会响应施加于其上的力而聚集,但由于与细胞外基质的粘附也会诱导触发整体细胞收缩性的生化信号,因此目前尚不清楚施加于特定粘附的力是否会导致任何机械串扰剩余的粘附分布在整个细胞中。该项目将结合两名研究人员的专业知识,采用一种新技术,同时允许对细胞粘附表面进行局部机械刺激,并对整个细胞响应这种刺激而产生的局部力场进行空间分辨测量。有人提出,局部刺激和整体机械反应之间的关系对于将力转换为有意义的反应所需的细胞骨架内的机械协调至关重要。两位研究人员最近开发了一种技术,其中微加工柱阵列的偏转报告了附着在阵列上的细胞产生的细胞骨架张力和局部力场,并且嵌入在各个柱中的纳米工程磁性材料用于施加可调谐的亚细胞机械力。对附着细胞的压力。因此,细胞可以在一个柱上受到局部扰动,而周围的柱同时测量这种刺激的效果。该项目的具体目标 1 是将纳牛顿水平上明确的力应用于细胞中的个体粘附,并测量细胞在收缩性和粘附斑结构变化方面的整体反应。具体目标 2 是确定粘附信号在对力的机械响应中的作用。具体目标 3 将是研究细胞骨架张力的变化在调节粘着斑对力的反应中的作用。这项新技术使实验成为可能,将带来对细胞如何将机械应力转变成适应性、协调的细胞骨架反应的新认识,并将为深入了解对炎症、增殖和组织至关重要的机械转导机制开辟新途径。发展。公共健康相关性:这项研究将应用磁性微米和纳米技术的最新进展来研究血管细胞对力和机械应力的反应。当血管中的细胞受到异常压力(例如高血压动脉硬化)时,它们会表现出异常的物理和生化反应,从而进一步加剧疾病的进展。这项研究将为细胞水平上的这些过程提供新的见解,并将有可能为了解血管疾病做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL H REICH其他文献
DANIEL H REICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL H REICH', 18)}}的其他基金
Integrated System for Mechanoelectrical Studies of Cardiac Myofibroblasts
心脏肌成纤维细胞机电研究集成系统
- 批准号:
8176273 - 财政年份:2011
- 资助金额:
$ 33.97万 - 项目类别:
Integrated System for Mechanoelectrical Studies of Cardiac Myofibroblasts
心脏肌成纤维细胞机电研究集成系统
- 批准号:
8311649 - 财政年份:2011
- 资助金额:
$ 33.97万 - 项目类别:
Magnetically patterned co-cultures for cancer studies
用于癌症研究的磁性图案共培养物
- 批准号:
7485706 - 财政年份:2007
- 资助金额:
$ 33.97万 - 项目类别:
Magnetically patterned co-cultures for cancer studies
用于癌症研究的磁性图案共培养物
- 批准号:
7289084 - 财政年份:2007
- 资助金额:
$ 33.97万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别: