Improving Reproducibility by Incorporating Uncertainty
通过纳入不确定性来提高再现性
基本信息
- 批准号:10322751
- 负责人:
- 金额:$ 27.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAppearanceAreaBayesian MethodBehaviorBody mass indexCYP2D6 geneClinicalCommunitiesConsensusCreativenessData CollectionEffectivenessEvaluationGenotypeGrantGuidelinesHeterogeneityIndividualInfluentialsInformaticsJournalsJudgmentLife StyleMeasurementMeta-AnalysisMethodsObesityOutcomePaperPerceptionPredispositionPublication BiasReactionRelative RisksReportingReproducibilityResearchResearch PersonnelResidual stateResourcesRiskSelection BiasSourceSpeedSystematic BiasTamoxifenTechniquesTestingUncertaintyUnited States National Institutes of Healthadvanced analyticsbasecancer recurrencecomplex datadisorder later incidence preventioneditorialevidence baseimprovedinformatics toolmalignant breast neoplasmmetabolic phenotypemortalitysimulationskillsweb-enabled
项目摘要
In recent years, stakeholders in the scientific and lay communities have raised alarms about a lack of
reproducibility of scientific results. These stakeholders view the reproducibility crisis as a product of the
behavior of researchers and editors. While these behaviors likely have an impact on reproducibility, there are
credible reasons why studies of complex data should be expected to arrive at different estimates. First, each
study is differentially susceptible to systematic biases, including confounding, selection bias and measurement
error. These biases may be large drivers of the appearance of poor reproducibility. Second, many studies that
have been criticized for lack of replication are small, and therefore subject to substantial random variability. In
combination with selection forces emanating from significance testing, these small studies are likely to
overestimate effects, further contributing to the appearance of poor reproducibility. To date, proposed solutions
to the perceived reproducibility crisis have largely ignored these contributing factors. We propose to (a) use
simulation-based quantitative bias analysis techniques to adjust for the influence of systematic errors on
estimates of association and on summaries of an evidence base, and (b) use Bayesian statistical methods to
synthesize prior information with estimates of association and summaries of an evidence base to reduce
random variability. The premise of the proposed project is that the use of these informatics approaches will
reduce the potential for systematic and random error to misleadingly portray research as poorly reproducible
and will identify the most important limitations in an evidence base, which will optimize decisions regarding new
data collection. The proposed informatics will be extended and applied in the context of two high profile,
controversial topic areas with complex data, which will provide examples applicable to other topic areas. For
both topic areas, many sources of potential bias have been identified in the surrounding discourse—as have
powerful sources of prior information to temper uncertainty—but their influences on individual estimates of
association and summaries of the evidence base have not been fully quantified. Quantitative adjustments for
these errors using quantitative bias analysis and Bayesian methods—and for publication bias on meta-analytic
summaries—would improve reproducibility. We will then extend and apply web-enabled informatics tools to
implement the methods for any topic with a set of heterogeneous study results, allowing stakeholders without
advanced analytic skills to tailor the underlying assumptions and see for themselves the impact on the
summary results. By achieving our aims, this project will advance the use of research informatics to diminish
the reproducibility crisis, help to speed consensus-building for any research topic, and productively channel
research resources towards resolving the most influential sources of uncertainty in any topic area.
近年来,科学界和非专业界的利益相关者对缺乏科学知识提出了警告。
这些利益相关者将可重复性危机视为科学结果的可重复性的产物。
研究人员和编辑的行为虽然可能会对再现性产生影响,但也存在一些问题。
为什么复杂数据的研究应该得出不同的估计值的令人信服的理由首先,每个。
研究不同程度地容易受到系统偏差的影响,包括混杂、选择偏差和测量
这些偏差可能是导致再现性差的主要原因。
因缺乏重复性而受到批评的样本量很小,因此受到很大的随机变异性的影响。
结合显着性检验产生的选择力,这些小型研究可能会
高估了效果,进一步导致了再现性差的出现。迄今为止,提出的解决方案。
对于所感知的可重复性危机,我们建议(a)使用这些影响因素。
基于模拟的定量偏差分析技术,用于调整系统误差对
关联估计和证据基础摘要,以及 (b) 使用贝叶斯统计方法
将先验信息与关联估计和证据基础摘要相结合,以减少
拟议项目的前提是这些信息学方法的使用将
减少系统性和随机性错误的可能性,从而误导性地将研究描述为重复性差
并将确定证据库中最重要的限制,这将优化有关新产品的决策
拟议的信息学将在两个备受瞩目的背景下得到扩展和应用。
具有复杂数据的有争议的主题领域,这将提供适用于其他主题领域的示例。
在这两个主题领域,在周围的话语中已经发现了许多潜在偏见的来源——正如
先验信息的强大来源可以缓和不确定性,但它们对个人估计的影响
基础证据的关联和总结尚未完全量化。
使用定量偏差分析和贝叶斯方法以及荟萃分析的发表偏差来消除这些错误
摘要 - 将提高可重复性,然后我们将扩展并应用支持网络的信息学工具。
使用一组异构研究结果实施任何主题的方法,使利益相关者无需
先进的分析技能来调整基本假设并亲自了解对结果的影响
通过实现我们的目标,该项目将促进研究信息学的使用,以减少
再现性危机,有助于加快任何研究主题的共识建立,并有效地引导
用于解决任何主题领域中最具影响力的不确定性来源的研究资源。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common misconceptions about validation studies.
关于验证研究的常见误解。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:7.7
- 作者:Fox, Matthew P;Lash, Timothy L;Bodnar, Lisa M
- 通讯作者:Bodnar, Lisa M
Yland et al. Respond to "Heuristics and Wish Bias".
伊兰等人。
- DOI:
- 发表时间:2022-07-23
- 期刊:
- 影响因子:5
- 作者:Yland, Jennifer J;Wesselink, Amelia K;Lash, Timothy L;Fox, Matthew P
- 通讯作者:Fox, Matthew P
Validation of LexisNexis Accurint in the Georgia Cancer Registry's Cancer Recurrence and Information Surveillance Program.
LexisNexis Accurint 在佐治亚州癌症登记处的癌症复发和信息监测计划中的验证。
- DOI:
- 发表时间:2021-05-01
- 期刊:
- 影响因子:0
- 作者:Woolpert, Kirsten M;Ward, Kevin C;England, Cameron V;Lash, Timothy L
- 通讯作者:Lash, Timothy L
Misconceptions About the Direction of Bias From Nondifferential Misclassification.
关于非差异错误分类的偏差方向的误解。
- DOI:
- 发表时间:2022-07-23
- 期刊:
- 影响因子:5
- 作者:Yland, Jennifer J;Wesselink, Amelia K;Lash, Timothy L;Fox, Matthew P
- 通讯作者:Fox, Matthew P
Application of the Adaptive Validation Substudy Design to Colorectal Cancer Recurrence.
适应性验证子研究设计在结直肠癌复发中的应用。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Collin, Lindsay J;Riis, Anders H;MacLehose, Richard F;Ahern, Thomas P;Erichsen, Rune;Thorlacius;Lash, Timothy L
- 通讯作者:Lash, Timothy L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy L. Lash其他文献
Timothy L. Lash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy L. Lash', 18)}}的其他基金
Registering Cancer Recurrences in the Georgia Cancer Registry
在佐治亚州癌症登记处登记癌症复发
- 批准号:
10330476 - 财政年份:2019
- 资助金额:
$ 27.05万 - 项目类别:
Registering Cancer Recurrences in the Georgia Cancer Registry
在佐治亚州癌症登记处登记癌症复发
- 批准号:
10556403 - 财政年份:2019
- 资助金额:
$ 27.05万 - 项目类别:
Doctoral Student Workshop Co-Sponsored by the Society for Epidemiologic Research
流行病学研究学会联合主办的博士生研讨会
- 批准号:
8838485 - 财政年份:2015
- 资助金额:
$ 27.05万 - 项目类别:
Does stanniocalcin predict late breast cancer recurrence, or is it a fish story?
斯钙素是否能预测晚期乳腺癌复发,还是纯属虚构?
- 批准号:
8935765 - 财政年份:2014
- 资助金额:
$ 27.05万 - 项目类别:
Does stanniocalcin predict late breast cancer recurrence, or is it a fish story?
斯钙素是否能预测晚期乳腺癌复发,还是纯属虚构?
- 批准号:
8692147 - 财政年份:2014
- 资助金额:
$ 27.05万 - 项目类别:
New and integrated perspectives on modification of tamoxifen effectiveness
关于他莫昔芬有效性修改的新的综合视角
- 批准号:
8642152 - 财政年份:2013
- 资助金额:
$ 27.05万 - 项目类别:
New and integrated perspectives on modification of tamoxifen effectiveness
关于他莫昔芬有效性修改的新的综合视角
- 批准号:
8973797 - 财政年份:2013
- 资助金额:
$ 27.05万 - 项目类别:
New and integrated perspectives on modification of tamoxifen effectiveness
关于他莫昔芬有效性修改的新的综合视角
- 批准号:
8439898 - 财政年份:2013
- 资助金额:
$ 27.05万 - 项目类别:
New and integrated perspectives on modification of tamoxifen effectiveness
关于他莫昔芬有效性修改的新的综合视角
- 批准号:
8825461 - 财政年份:2013
- 资助金额:
$ 27.05万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mucoadhesive film for the treatment of vestibulodynia
治疗前庭痛的粘膜粘附膜
- 批准号:
10699463 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Identification of Trichomonas vaginalis resistance targets to inform future drug development
确定阴道毛滴虫耐药靶标,为未来药物开发提供信息
- 批准号:
10462312 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Mucoadhesive film for the treatment of vestibulodynia
治疗前庭痛的粘膜粘附膜
- 批准号:
10699463 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Large-scale calcium and voltage imaging to illuminate neural mechanisms of visual experience
大规模钙和电压成像阐明视觉体验的神经机制
- 批准号:
10753172 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Development and Evaluation of an Avatar Guided Mobile Health for Emerging Adults
针对新兴成年人的化身引导移动健康的开发和评估
- 批准号:
10843991 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别: