A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
基本信息
- 批准号:10324513
- 负责人:
- 金额:$ 29.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-20 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Abdominal InfectionAcyl Carrier ProteinAddressAffinityAmino SugarsAminoglycosidesAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAntisense OligonucleotidesAwarenessBacillusBacteriaBacterial Antibiotic ResistanceBacterial GenesBacterial InfectionsBase SequenceBindingBiological AssayBiophysicsBostonCell WallCell membraneCellsCessation of lifeChemicalsChemistryClinicalColistinCommunicable DiseasesDataDevelopmentDrug DesignDrug TargetingDrug resistanceEnterobacteriaceaeEnzymesEpidemicEscherichia coliEssential GenesFamilyFatty AcidsFluorescenceFutureGene TargetingGenerationsGenesGlycopeptidesGram-Negative BacteriaGram-Negative Bacterial InfectionsGrowthHIVHealth Care CostsHigh Pressure Liquid ChromatographyInfectionInstitute of Medicine (U.S.)Intra-abdominalLactamsLeadLegal patentLengthLength of StayLettersLibrariesLigand BindingLigandsLipidsMaintenanceMalariaMembraneMessenger RNAMicroRNAsModelingMorbidity - disease rateMulti-Drug ResistanceNatural ProductsNosocomial InfectionsNucleic AcidsOrganismParasitesPathogenesisPathogenicityPenicillinsPeptidesPharmaceutical PreparationsPhasePlayPneumoniaProtein BiosynthesisQuinolonesRNARNA BindingRNA InterferenceRNA SequencesRapid screeningRegulationReporterReporter GenesReportingResistanceResistance profileRibosomesSepsisSeveritiesSolidStaphylococcal InfectionsStructureSystemTherapeuticToxic effectTuberculosisUnited StatesUnited States National Academy of SciencesUrinary tract infectionVirusWitWorkWorld Health Organizationantibiotic resistant infectionsantimicrobialcarbapenem-resistant Enterobacteriaceaecombatcosteconomic impactexperimental studyextensive drug resistancefightingfunctional groupfungusimmunogenicimprovedinnovationinterestlipid biosynthesismicroorganismmortalitynovelnovel strategiesnovel therapeuticspathogenpathogenic bacteriaphase 2 studypriority pathogenscreeningside effecttargeted agenttargeted deliverytigecyclineuptake
项目摘要
PROJECT SUMMARY
The world is rapidly heading towards a pre-1940’s scenario when it comes to fighting infectious disease.
Antimicrobial resistance is a growing problem on a global scale, greatly hampering our abilities to quell
worldwide epidemics such as tuberculosis and malaria, as well as the simple staphylococcus infection .
The proposed project is significant because unless innovative strategies are developed to
produce robust and effective new classes of antibiotics, health care costs will continue to climb
and we will completely lose our ability to combat even the most common infection. Current
antibiotic treatments originated predominantly from natural products produced by fungi and bacteria that
were able to inhibit the growth of other organisms, usually by inhibiting cell wall synthesis or maintenance
or by inhibiting protein synthesis. Since penicillin was first isolated by Fleming in 1929, most of the
subsequent generations of antibiotics remain very similar to the original natural products, wit h functional
groups modified to increase their activity across a broader range of pathogens and decrease their side
effect profiles. Oxazolidones, glycopeptides, -lactams, and quinolones show some promise for the
future, but Gram-negative bacterial infections still remain problematic.
Cases of multidrug-resistant (MDR, resistance to 2-3 classes), extensive drug resistance (XDR, resistance to
most classes except colistin or tigecycline) and even pan drug resistance (PDR, resistance to all classes)
nosocomial bacterial infections have skyrocketed in recent years, and the emergence of pan drug-resistant
isolates are making these infections increasingly difficult to treat. Hospital-acquired infections like these
account for up to 4% of all hospital stays in the United States and are incredibly diverse in causative pathogen,
antibiotic resistance profile, and severity. A significant cause of nosocomial infection is the Enterobacteriaceae
family, which includes Gram-negative bacilli that can be commensal or pathogenic. Enterobacteriaceae have
a widespread clinical and economic impact due to the diversity of infections they cause; this family causes
many infections such as pneumonia, bloodstream infections (BSIs), urinary tract infections (UTIs), and intra-
abdominal infections (IAIs). The World Health Organization (WHO) lists carbapenem-resistant
Enterobacteriaceae (CRE) as having a critical need for novel antibiotics on their Priority Pathogens list.
Because the mortality of these multi drug-resistant infections is between 30 and 50% and there is such difficulty
in finding viable treatments, the need for novel therapeutics for these pathogens must be addressed.
Nucleic acids are promising avenues for drug design, both as therapeutics and as targets. Targeting heavily
conserved RNA sequences and structures, in bacteria (Enterobacteriaceae), and involved in proliferation and
survival of bacteria, is a promising approach. Using our proprietary probes, assays and libraries, we
propose to develop a screening assay for an essential gene in Enterobacteriaceae. Here we propose an
innovative plan for identification of a novel class of ligands that are specific for an mRNA present in
an essential gene in bacteria, and we propose a biophysical screening assay for identifying such
ligands. First, as outlined in Specific Aim 1, we will characterize a model nucleic acid domain that will be
synthesized commercially and identify specific and high-affinity aminosugar binders. We will then synthesize
sequence-specific RNA binding ligands and screen this targeted library of conjugates for sequence-specific
binding and gene inhibition. The mechanism of action will be confirmed using a reporter gene assay (Specific
Aim 2). A successful application of the approach will allow us to identify and validate lead compounds for
inhibition of bacterial growth in Phase II studies.
项目概要
在抗击传染病方面,世界正迅速走向 1940 年代之前的局面。
抗菌素耐药性是全球范围内一个日益严重的问题,极大地阻碍了我们消除耐药性的能力
世界范围内的流行病,例如结核病和疟疾,以及单纯的葡萄球菌感染。
拟议的项目意义重大,因为除非制定创新战略
生产强效有效的新型抗生素,医疗保健成本将继续攀升
我们将完全失去抵抗当前最常见感染的能力。
抗生素治疗主要源自真菌和细菌产生的天然产物,
能够抑制其他生物体的生长,通常是通过抑制细胞壁合成或维持
或通过抑制蛋白质合成,自 1929 年弗莱明首次分离出青霉素以来,大多数
后续几代抗生素仍然与原始天然产物非常相似,具有功能性
修改后的群体可提高其对更广泛病原体的活性并减少其副作用
恶唑烷酮、糖肽、β-内酰胺和喹诺酮类药物显示出一些前景。
未来,但革兰氏阴性细菌感染仍然存在问题。
多重耐药(MDR,对2-3类耐药)、广泛耐药(XDR,对2-3类耐药)的病例
除粘菌素或替加环素之外的大多数类别)甚至泛耐药性(PDR,对所有类别的耐药性)
近年来医院细菌感染激增,泛耐药菌出现
分离株使这些感染变得越来越难以治疗。
占美国所有住院时间的 4%,并且致病病原体极其多样化,
抗生素耐药性和严重程度是医院感染的一个重要原因。
家族,包括革兰氏阴性杆菌,可以是共生的或致病的。
由于该家族引起的感染的多样性,产生广泛的临床和经济影响;
许多感染,如肺炎、血流感染 (BSI)、尿路感染 (UTI) 和体内感染
世界卫生组织 (WHO) 列出了对碳青霉烯类药物耐药的腹部感染 (IAI)。
肠杆菌科 (CRE) 在其优先病原体清单中迫切需要新型抗生素。
因为这些多重耐药感染的死亡率在30%到50%之间,而且有这么大的难度。
在寻找可行的治疗方法时,必须解决对这些病原体的新疗法的需求。
核酸是药物设计的有前途的途径,无论是作为治疗药物还是作为重点靶向药物。
细菌(肠杆菌科)中保守的 RNA 序列和结构,并参与增殖和
细菌的存活是一种很有前景的方法,我们使用我们专有的探针、检测方法和文库。
提议开发一种肠杆菌科必需基因的筛选方法。
鉴定一类新型配体的创新计划,这些配体对存在于 mRNA 中的 mRNA 具有特异性
细菌中必需的基因,我们提出了一种生物物理筛选方法来识别这种基因
首先,如具体目标 1 中所述,我们将表征一个模型核酸结构域,该结构域将是
商业合成并鉴定特异性和高亲和力的氨基糖结合剂,然后我们将合成。
序列特异性 RNA 结合配体,并筛选该靶向缀合物库的序列特异性
结合和基因抑制将使用报告基因测定来确认(具体)。
目标 2) 的成功应用将使我们能够识别和验证先导化合物。
II 期研究中抑制细菌生长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
sandra Paige story其他文献
sandra Paige story的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('sandra Paige story', 18)}}的其他基金
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10653818 - 财政年份:2022
- 资助金额:
$ 29.45万 - 项目类别:
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10381446 - 财政年份:2022
- 资助金额:
$ 29.45万 - 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
- 批准号:
10453726 - 财政年份:2021
- 资助金额:
$ 29.45万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10080557 - 财政年份:2020
- 资助金额:
$ 29.45万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10220711 - 财政年份:2020
- 资助金额:
$ 29.45万 - 项目类别:
相似国自然基金
载体蛋白上丙二酸单酰基的甲酯化催化机制的研究
- 批准号:32370042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
烯酰基-酰基载体蛋白还原酶(InhA)抑制剂的设计、合成与抗结核药理活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于酰基载体蛋白定量调控机制重设计真菌I型脂肪酸合酶
- 批准号:22177018
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
酰基载体蛋白ACP变构驱动的酰基转移分子机制研究
- 批准号:21877110
- 批准年份:2018
- 资助金额:67.5 万元
- 项目类别:面上项目
革兰氏阴性菌溶血磷脂转运体LplT与酰基-酰基载体蛋白合成酶Aas结构与功能研究
- 批准号:31800052
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Chemical tools to investigate chain-flipping in quorum signal synthases
研究群体信号合酶链翻转的化学工具
- 批准号:
10645548 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10430402 - 财政年份:2022
- 资助金额:
$ 29.45万 - 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10594577 - 财政年份:2022
- 资助金额:
$ 29.45万 - 项目类别:
Molecular principles of stringent response activation in bacteria
细菌严格反应激活的分子原理
- 批准号:
10453921 - 财政年份:2021
- 资助金额:
$ 29.45万 - 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
- 批准号:
10453726 - 财政年份:2021
- 资助金额:
$ 29.45万 - 项目类别: