Artificial Intelligence Enabled Multi-Spectral Autofluorescence Imaging for Real-time Determination of Muscle in Bladder Tumor During Resection
人工智能支持多光谱自发荧光成像,可在切除过程中实时确定膀胱肿瘤中的肌肉
基本信息
- 批准号:10325131
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-27 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArtificial IntelligenceBiochemicalBiologicalBladderBladder NeoplasmCellsCharacteristicsClassificationClinicClinicalCollagenComplementConnective TissueCystoscopesDataDetectionDevelopmentDevicesDiagnosisDiagnosticDinucleoside PhosphatesElastinEndoscopyEpithelialExcisionExtracellular MatrixFlavin-Adenine DinucleotideFluorescenceGoalsGoldGuidelinesHematoxylin and Eosin Staining MethodHistopathologyHospitalsImageImaging DeviceInstitutional Review BoardsInvestigationLabelLamina PropriaMalignant neoplasm of urinary bladderMapsMeasuresMetabolicMethodsModelingMorphologyMuscleNetwork-basedNeuronsNiacinamideOperative Surgical ProceduresOpticsOutpatientsPathologistPatient-Focused OutcomesPatientsPatternPerformancePostoperative PeriodPredictive ValueProceduresProcessPrognosisReadingResearch PersonnelResectedSamplingScanningSensitivity and SpecificitySlideSpecimenStagingStainsSurgeonSystemTechniquesTestingTimeTissue SampleTissuesTrainingTransurethral ResectionUltraviolet RaysValidationWorkabsorptionalgorithm trainingbasecancer recurrencecare costschromophoreclassification algorithmclinical translationcommercializationconvolutional neural networkcost effectivedeep learningdeep neural networkdetrusor musclefluorophorehistological stainshistopathological examinationimaging systemimprovedin vivomalignant breast neoplasmminimally invasivemortalitynetwork modelsneural networkoptical imagingperformance testspoint of careprognostic significancereal-time imagesresearch clinical testingresponsestandard of caretooluser-friendlyvalidation studiesvirtual
项目摘要
PROJECT SUMMARY
For adequate diagnosis and staging, transurethral resection of bladder tumor (TURBT) specimens must extend
into the bladder muscle wall. Studies indicate that for patients with high-grade bladder cancer, 5-year mortality
was 8% when the muscle was present in the TURBT specimen, and 13% when absent. For this reason, if
there is not sufficient muscle in the specimen after the initial resection, guidelines recommend repeat TURBT.
Almost half of TURBTs do not contain muscle as confirmed post-operatively by histopathologic examination.
There are currently no practical tools available to surgeons to determine during the procedure whether the
resected specimen includes sufficient muscle tissue. The goal of this project is to develop an imaging device
that will be used for point-of-surgery detection of muscle in TURBT specimen in real-time. We will use
ultraviolet light-emitting diodes to selectively excite different native fluorescent molecules in the tissue sample.
We will further increase the biochemical information content by complementing the autofluorescence data with
multi-wavelength reflectance images. We hypothesize that the combined multi-spectral autofluorescence and
reflectance images will provide a snapshot of the integral biomolecular information of the tissue and, when
combined with deep learning, capture latent biochemical and morphological differences that are encoded in the
multispectral images. Our hypothesis is based on the fact that the connective tissue lamina propria and
epithelial tissue have different biochemical make-up than the muscularis propria. We will employ a deep
learning framework on the acquired images to develop a training algorithm from >200 ex vivo TURBT
specimens from > 50 patients. The measured tissue will be processed for histopathological investigation to
create true labels for algorithm training. We will interpret the deep learning classification results by correlating
the extracted class features from the trained neural network with input image parameters, and consequently
attribute them with known biological differences of the tissue types. To test the algorithm, we will acquire
independent image sets from 80 samples from 20 patients and assess the concordance between our results
and pathologists’ reading of the Hematoxylin and Eosin (H&E) slides. We will also use a convolutional neural
network trained using a generative adversarial-network model to transform wide-field autofluorescence images
acquired from unlabeled tissue sections into H&E images of the same samples. The virtual H&E images will be
evaluated by pathologists to recognize major histopathological features in images generated with our virtual
staining technique and compared with the histologically stained images of the same samples.
项目概要
为了充分诊断和分期,经尿道膀胱肿瘤切除术 (TURBT) 标本必须延长
研究表明,对于高级别膀胱癌患者,5 年死亡率较高。
当 TURBT 样本中存在肌肉时,该比例为 8%;因此,如果 TURBT 样本中不存在肌肉,则该比例为 13%。
初次切除后标本中没有足够的肌肉,指南建议重复 TURBT。
术后组织病理学检查证实,几乎一半的 TURBT 不含有肌肉。
目前没有实用的工具可供外科医生在手术过程中确定是否
切除的标本包含足够的肌肉组织 该项目的目标是开发一种成像设备。
我们将使用它来实时检测 TURBT 样本中的肌肉。
紫外发光二极管选择性地激发组织样本中不同的天然荧光分子。
我们将通过补充自发荧光数据来进一步增加生化信息内容
我们捕获了组合的多光谱自发荧光和
反射图像将提供组织的完整生物分子信息的快照,并且当
与深度学习相结合,捕获编码在细胞中的潜在生化和形态差异
我们的假设基于以下事实:结缔组织固有层和
上皮组织与固有肌层具有不同的生化组成,我们将采用深层。
基于所获取的图像的学习框架,用于开发超过 200 个离体 TURBT 的训练算法
来自 > 50 名患者的标本将被处理用于组织病理学研究
我们将通过关联来解释深度学习分类结果,为算法训练创建真实标签。
使用输入图像参数从经过训练的神经网络中提取的类特征,从而
为了测试算法,我们将获取组织类型的已知生物学差异。
来自 20 名患者的 80 个样本的独立图像集,并评估我们结果之间的一致性
以及病理学家对苏木精和曙红 (H&E) 幻灯片的阅读我们还将使用卷积神经网络。
使用生成对抗网络模型训练网络来转换宽视场自发荧光图像
从未标记的组织切片获取到相同样本的 H&E 图像,虚拟 H&E 图像将被生成。
由病理学家进行评估,以识别我们的虚拟生成的图像中的主要组织病理学特征
染色技术并与相同样品的组织学染色图像进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rishikesh Pandey其他文献
Rishikesh Pandey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing neurocognitive symptoms in older adults with primary hyperparathyroidism
原发性甲状旁腺功能亢进症老年人的神经认知症状特征
- 批准号:
10725231 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Infrared Spectroscopic Imaging and Machine Learning for Risk Stratification of Oral Epithelial Dysplasia
红外光谱成像和机器学习用于口腔上皮发育不良的风险分层
- 批准号:
10606086 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
DSpace: Utilizing Data Science to Predict and Improve Health Outcomes in Pediatric HIV
DSpace:利用数据科学预测和改善儿童艾滋病毒的健康结果
- 批准号:
10749123 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10358980 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
AI-Informed Signaling Factor Design for In Vitro Rejuvenating Mesenchymal Stromal Cells
用于体外再生间充质基质细胞的人工智能信号因子设计
- 批准号:
10733714 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别: