Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
基本信息
- 批准号:10308818
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Anti-Bacterial AgentsAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacteriaBacterial InfectionsBindingBinding ProteinsBurn injuryBypassCationsCeftazidimeCell Membrane PermeabilityCellsCephalosporinsChargeDaughterDrug resistanceESKAPE pathogensEscherichia coliFamilyGeneticGenomicsGram-Negative BacteriaIn VitroInfection ControlKlebsiella pneumoniaeLabelLearningLibrariesLipid ALocationMeasurementMeasuresMembraneMicrobial BiofilmsModificationMolecular EvolutionOperonParentsPathway interactionsPatternPeptide HydrolasesPeptidesPharmaceutical PreparationsPropertyPseudomonas aeruginosaPublicationsReportingResearch PersonnelResidual stateResistanceResistance developmentSerum ProteinsSiteSkin TissueSoft Tissue InfectionsSolubilityStructureSurfaceTestingTimeToxic effectWorkantimicrobial peptidebactericideclinical applicationcytotoxicitydesigndrug resistant bacteriafight againstin vivoinorganic phosphateinsightmedical implantnovelnovel strategiespathogenpreventresistance mechanismscreeningsmall moleculewound
项目摘要
Summary
In the ongoing fight against drug resistant bacterial infections it will be critical to identify novel antibiotic
chemotypes that are less likely to induce resistance. We have used synthetic molecular evolution (SME), iterative
library design and screening, to identify novel antimicrobial peptides that have potent broad-spectrum sterilizing
activity against all ESKAPE pathogens tested, including drug-resistant and biofilm-forming pathogens, in vitro
and in vivo. These peptides are highly soluble, protease resistant, have low cytotoxicity, and are active in the
presence of concentrated host cells and/or serum proteins. Most importantly, they do not induce resistance in P.
aeruginosa under conditions that rapidly enable development of resistance to conventional antibiotics and some
AMPs. Resistance to some other AMPs has been reported, and it has been experimentally selected. However,
avoidance or delay in resistance to AMPs have also been reported. Here we seek to understand the mechanism
of resistance-avoidance. The most commonly observed AMP resistance mechanism, by far, is the modification
of Lipid A phosphates with cationic moieties, which dramatically reduces the potential for AMP interactions with
the outer membrane(OM). We have previously shown that some AMPs bind strongly and accumulate
significantly on OM LPS. In this work we will test the hypothesis that peptides requiring large scale accumulation
on the outer membrane LPS, including Lipid A, before they can cross it will be able to drive selection for
resistance using this mechanism. AMPs that can bypass the OM to reach the inner membrane target without
requiring large scale accumulation on the OM will be slower or unable to elicit resistance. To test this hypothesis,
we have identified two related AMPs, one that rapidly invokes resistance in Pseudomonas aeruginosa, and one
that does not invoke any resistance at all in multiple passages under the same conditions. We will use these two
peptides, and others, to study resistance and resistance-avoidance mechanisms in P. aeruginosa and other
Gram-negative bacteria using i) direct measurements of AMP-bacteria binding, ii) genetic assessment of
resistance pathways, iii) direct assessment of Lipid A modifications. We will also test for resistance avoidance in
a panel of other Gram-negative pathogens to test for the generality of the mechanism.
概括
在持续对抗耐药细菌感染的斗争中,识别新型抗生素至关重要
不太可能诱导耐药性的化学型。我们使用了合成分子进化(SME)、迭代
文库设计和筛选,鉴定具有强效广谱灭菌作用的新型抗菌肽
对所有经过测试的 ESKAPE 病原体(包括耐药病原体和生物膜形成病原体)的体外活性
和体内。这些肽具有高度可溶性、蛋白酶抗性、低细胞毒性,并且在
存在浓缩的宿主细胞和/或血清蛋白。最重要的是,它们不会诱导 P.
铜绿假单胞菌在快速产生对常规抗生素和某些抗生素耐药性的条件下
AMP。据报道,对其他一些 AMP 具有抗性,并且已通过实验选择了它。然而,
也有报道称避免或延迟对 AMP 产生耐药性。在这里我们试图了解其中的机制
的抵抗-回避。迄今为止,最常见观察到的 AMP 抗性机制是修饰
具有阳离子部分的脂质 A 磷酸盐,这大大降低了 AMP 与
外膜(OM)。我们之前已经证明一些 AMP 会强烈结合并积累
OM LPS 显着。在这项工作中,我们将检验以下假设:肽需要大规模积累
外膜上的 LPS(包括脂质 A)在穿过之前能够驱动选择
使用这种机制进行抵抗。可以绕过 OM 到达内膜目标的 AMP,无需
需要在 OM 上进行大规模积累,速度会较慢或无法引起抵抗。为了检验这个假设,
我们已经确定了两种相关的 AMP,一种能够快速引发铜绿假单胞菌的耐药性,另一种能够快速引起铜绿假单胞菌的耐药性
在相同条件下的多个段落中根本不会引起任何阻力。我们将使用这两个
肽等,以研究铜绿假单胞菌和其他细菌的耐药性和耐药性避免机制
革兰氏阴性细菌使用 i) 直接测量 AMP-细菌结合,ii) 遗传评估
耐药途径,iii) 直接评估脂质 A 修饰。我们还将测试抵抗避免
一组其他革兰氏阴性病原体来测试该机制的普遍性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM C WIMLEY其他文献
WILLIAM C WIMLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILLIAM C WIMLEY', 18)}}的其他基金
Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
- 批准号:
10412134 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
相似国自然基金
基于“成分-肠道菌群-胆汁酸轴”研究生姜-干姜走守并用治疗抗生素相关性腹泻配伍机理
- 批准号:82374053
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗生素治疗药物监测及耐药症候一体化阵列传感技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素治疗压力下养殖场废弃物中抗生素抗性基因水平转移机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:32101073
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
- 批准号:
10603693 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Molecular mechanisms of inherent drug resistance in non-tuberculous mycobacteria
非结核分枝杆菌固有耐药性的分子机制
- 批准号:
10771645 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别: