Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
基本信息
- 批准号:10424854
- 负责人:
- 金额:$ 22.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAffectBiologicalBiological MarkersBiologyBiopsy SpecimenCancer PatientCervix NeoplasmsCessation of lifeCharacteristicsClinicalClinical DataComplexDataData ReportingData SetDimensionsDiseaseEarly InterventionEquationFutureGene ExpressionGenesGenomicsGenotypeGoalsHPV oropharyngeal cancerHPV-High RiskHuman PapillomavirusImageInvestigational TherapiesLeadLearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of cervix uteriMethodologyMethodsModalityModelingOncogenicOrganoidsOutcomePathway interactionsPatient Outcomes AssessmentsPatient-Focused OutcomesPatientsPatternPhenotypePositron-Emission TomographyPrediction of Response to TherapyPredictive ValueRadiation Dose UnitRadiation therapyRadiogenomicsReaction TimeRecurrenceRegimenResearchRiskSample SizeSamplingStructural GenesStructureSurvival RateThe Cancer Genome AtlasTherapy Clinical TrialsTimeTreatment FailureTreatment outcomeTumor BankWomanX-Ray Computed Tomographyadvanced diseaseautoencoderbasecancer diagnosiscancer recurrencecancer subtypescancer survivalcancer typechemoradiationclinical phenotypeclinical predictorsclinical trial enrollmentclinically relevantcohortcomplex datadeep learningdeep learning modeldesigndifferential expressionepithelial to mesenchymal transitionexperiencefeature selectionfollow-upgenerative adversarial networkgenomic datahigh dimensionalityimprovedinsightnetwork modelsneural networknovelpatient stratificationpersonalized medicinepredicting responsepredictive markerpredictive modelingprognosticprospectiveradiation responseradiomicsresearch clinical testingrisk prediction modelstandard of carestemtooltreatment planningtreatment responsetreatment risktumor
项目摘要
PROJECT SUMMARY/ABSTRACT
The overall goal of this proposal is to optimize the use of radiomic and genomic data to develop biomarkers
which make clinical predictions that change cancer patient management. While the need for such predictive
biomarkers is evident across cancer types, we focus our proposal on the particularly prevalent and damaging
condition of recurrent, locally-advanced cervical cancer (LACC). Cervical cancer remains the third most
common cancer diagnosis of women, and treatment failure for locally-advanced disease is 30-50% following
chemoradiation therapy. There is a pressing need to identify patients at risk for treatment failure to allow for
personalized treatment including modified chemoradiation regimens, early escalation of therapy, and clinical
trial enrollment. To develop radiogenomic biomarkers for LACC recurrence, this proposal addresses three
outstanding methodological needs: limited availability of gene expression data for cancer subtypes, noisy and
redundant imaging feature data, and lack of disease-informed, interpretable -omics integration, each
addressed in its own specific aim. Aim 1 will use generative adversarial networks (GAN) to augment the small
gene expression datasets for all high-risk HPV subtypes. Aim 2 will optimize imaging feature selection using a
deep convolutional autoencoder (CAE). Aim 3 will integrate radiogenomic features through a structural
equation modeling (SEM) approach incorporating HPV-specific oncogenic mechanisms as latent variables.
Together, we expect fulfillment of these aims will create an optimized recurrence biomarker which will out-
perform other prediction modalities as well as standard-of-care follow-up imaging. Beyond the specific
application to HPV-driven malignancies, our proposal will generate novel tools and methods to integrate any
high-dimensional radiogenomic data with hypothesis-driven research findings to improve cancer prediction.
项目概要/摘要
该提案的总体目标是优化放射组学和基因组数据的使用来开发生物标志物
做出改变癌症患者管理的临床预测。虽然需要这样的预测
生物标志物在各种癌症类型中都很明显,我们的建议重点关注特别普遍且具有破坏性的癌症
复发性局部晚期宫颈癌(LACC)的情况。宫颈癌仍居第三位
女性常见癌症诊断,局部晚期疾病治疗失败率为 30-50%
放化疗。迫切需要识别有治疗失败风险的患者,以便
个性化治疗,包括修改放化疗方案、早期升级治疗和临床治疗
试招生。为了开发 LACC 复发的放射基因组生物标志物,该提案解决了三个问题
突出的方法学需求:癌症亚型的基因表达数据的可用性有限,噪声和
冗余的成像特征数据,以及缺乏疾病信息、可解释的组学整合,每个
并针对其自身的具体目标进行了阐述。目标 1 将使用生成对抗网络 (GAN) 来增强小型网络
所有高危 HPV 亚型的基因表达数据集。目标 2 将使用
深度卷积自动编码器(CAE)。目标 3 将通过结构整合放射基因组特征
方程建模 (SEM) 方法将 HPV 特异性致癌机制作为潜在变量。
我们共同期望这些目标的实现将创建一个优化的复发生物标志物,该标志物将超越 -
执行其他预测方式以及标准护理随访成像。超出具体
HPV 驱动的恶性肿瘤的应用,我们的建议将产生新的工具和方法来整合任何
高维放射基因组数据与假设驱动的研究结果可改善癌症预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Zhang其他文献
Jin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Zhang', 18)}}的其他基金
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
HPV genomic structure in cervical cancer radiation response and recurrence detection
HPV基因组结构在宫颈癌放射反应和复发检测中的作用
- 批准号:
10634999 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
- 批准号:
10643978 - 财政年份:2022
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
9891761 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10523104 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10308435 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
FASEB SRC on Protein Kinases and Protein Phosphorylation
FASEB SRC 关于蛋白激酶和蛋白磷酸化
- 批准号:
9754337 - 财政年份:2019
- 资助金额:
$ 22.09万 - 项目类别:
Signal Transduction by PI3K/Akt/mTOR Pathway
通过 PI3K/Akt/mTOR 途径进行信号转导
- 批准号:
9261547 - 财政年份:2015
- 资助金额:
$ 22.09万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
- 批准号:
10660605 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别: