A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
基本信息
- 批准号:10298698
- 负责人:
- 金额:$ 45.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAntigensAreaBacteriaBiochemicalBiocompatible MaterialsBiodistributionBiologicalBiological AssayBiomimeticsChemicalsChemistryCircular DichroismComplexContrast MediaDNAData ReportingDevelopmentDrug Delivery SystemsDrug FormulationsEmploymentEnvironmentEquilibriumExperimental ModelsFlow CytometryGelGrainHistologyHydration statusHydrogelsHydrophobicityImmunotherapyIn VitroIndividualInductively Coupled Plasma Mass SpectrometryInflammationLeucine ZippersMapsMethodologyMethodsMicroscopyModelingMolecularMorphologyMusNanoGelNanostructuresNatureNucleic AcidsOrganPeptide HydrolasesPharmaceutical PreparationsPopulation HeterogeneityProcessPropertyProteinsProteomicsRNARecording of previous eventsReportingReproducibilitySeriesSolventsSpatial DistributionSpecific qualifier valueStructureSulfonesSystemTestingTherapeuticToxic effectTracerVaccinesVertebral columnVesicleWateramphiphilicityaqueousbiomaterial compatibilitychemotherapyclinical translationcopolymercrystallinityexperienceexperimental studyfluorophorehydrophilicityimmunogenicityin vivoinnovationinsightmolecular dynamicsnanobiomaterialnanofabricationnanoscalenovelpropyleneprotein complexresearch clinical testingscale upself assemblysimulationsmall moleculetoolvaccine development
项目摘要
PROJECT SUMMARY
Significance: Nanostructure formation by supramolecular self-assembly primarily involves the
hydrophobic/hydrophilic equilibrium of amphiphiles within aqueous environments. The biocompatibility and
chemical versatility permitted by block copolymer amphiphiles have allowed the fabrication of a wide range of
nanoscale biomaterials (NBMs). Despite these advances, considerable challenges remain. Self-assembled
NBMs experience substantial difficulties with the encapsulation of molecules, with many (often difficult to express
or expensive) proteins and hydrophilic small molecules achieving low encapsulation efficiencies well below 20%.
Furthermore, the multicomponent structure of these amphiphiles often requires employment of complex block
copolymer chemistries, which can present difficulties when scaling up synthesis and purification for practical
clinical testing and translation.
Innovation: A novel means of supramolecular self-assembly that employs a single, simple, water-soluble
homopolymer that achieves >90% encapsulation efficiency universally for multiple hydrophilic (and hydrophobic)
small molecules and biologics simultaneously will be modeled, optimized and validated. The unique network
self-assembly of poly(propylene sulfone) (PPSU) homopolymers, which are simultaneously both soluble and
crystallizable in water, has not been previously reported. By adjusting solvent polarity, intra- and interchain
segments of noncovalent sulfone-sulfone bonds form along the PPSU backbone, biomimetic of DNA
hybridization and leucine zippers in proteins. Preliminary experiments and simulations of this process revealed
dynamic sulfone-sulfone interactions to form an interconnected physical gel network that can solidify into either
macroscale hydrogels or collapse into nanogels of diverse morphologies. Using this rapid and scalable
methodology, uniform populations of diverse nanogel morphologies can be specified, including spheres, vesicles
and filamentous bundles. Importantly, drugs (regardless of their physicochemical properties) are efficiently and
universally captured within PPSU nanogels during network collapse. This novel mechanism of molecular
encapsulation demonstrates an exceptionally high loading efficiency for all molecules tested and combinations
thereof, including proteins, DNA, RNA, fluorophores, contrast agents and small molecule drugs.
Two independent aims are proposed to optimize and validate PPSU NBMs as a novel controlled delivery platform
for biomedical applications. Aim 1: Employ molecular dynamics simulations and analytical nanoscale
microscopy to mechanistically understand PPSU self-assembly and therapeutic loading. Aim 2: Develop
universal molecular encapsulation by PPSU as a tool for the optimization of a model NBM vaccine formulation.
项目概要
意义:超分子自组装形成纳米结构主要涉及
水性环境中两亲物的疏水/亲水平衡。生物相容性和
嵌段共聚物两亲物所允许的化学多功能性允许制造各种
纳米级生物材料(NBM)。尽管取得了这些进展,但仍然存在相当大的挑战。自组装
NBM 在分子封装方面遇到了巨大的困难,其中许多(通常难以表达)
或昂贵的)蛋白质和亲水性小分子的封装效率远低于 20%。
此外,这些两亲物的多组分结构通常需要使用复杂的嵌段
共聚物化学,在扩大合成和纯化用于实际应用时可能会带来困难
临床测试和翻译。
创新:一种新颖的超分子自组装方法,采用单一、简单、水溶性
均聚物对于多种亲水性(和疏水性)普遍实现 >90% 的封装效率
小分子和生物制剂将同时进行建模、优化和验证。独特的网络
聚(丙烯砜)(PPSU)均聚物的自组装,同时具有可溶性和可溶性
能在水中结晶,此前未见报道。通过调整溶剂极性、链内和链间
非共价砜-砜键片段沿着 PPSU 主链形成,仿生 DNA
蛋白质中的杂交和亮氨酸拉链。该过程的初步实验和模拟揭示了
动态的砜-砜相互作用形成互连的物理凝胶网络,可以固化成
宏观水凝胶或塌陷成不同形态的纳米凝胶。使用这种快速且可扩展的
方法,可以指定不同纳米凝胶形态的统一群体,包括球体、囊泡
和丝状束。重要的是,药物(无论其理化性质如何)能够有效且有效地发挥作用。
在网络崩溃期间普遍捕获在 PPSU 纳米凝胶中。这种新颖的分子机制
封装对所有测试的分子和组合表现出极高的装载效率
其中包括蛋白质、DNA、RNA、荧光团、造影剂和小分子药物。
提出了两个独立的目标来优化和验证 PPSU NBM 作为新型受控交付平台
用于生物医学应用。目标 1:采用分子动力学模拟和纳米级分析
显微镜以机械方式了解 PPSU 自组装和治疗负荷。目标 2:发展
PPSU 的通用分子封装作为优化 NBM 疫苗配方模型的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan A. Scott其他文献
Employing bicontinuous-to-micellar transitions in nanostructure morphology for on-demand photo-oxidation responsive cytosolic delivery and off–on cytotoxicity
- DOI:
10.1039/c9nr10921h - 发表时间:
2020-02 - 期刊:
- 影响因子:6.7
- 作者:
Sharan Bobbala;Sean D. Allen;Sijia Yi;Michael Vincent;Molly Frey;Nicholas B. Karabin;Evan A. Scott - 通讯作者:
Evan A. Scott
On the advancement of polymeric bicontinuous nanospheres toward biomedical applications
- DOI:
10.1039/c8nh00300a - 发表时间:
2018-11 - 期刊:
- 影响因子:9.7
- 作者:
Sean D. Allen;Sharan Bobbala;Nicholas B. Karabin;Evan A. Scott - 通讯作者:
Evan A. Scott
Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
- DOI:
10.1039/d3nr02874g - 发表时间:
2023-09 - 期刊:
- 影响因子:6.7
- 作者:
Hayden M. Pagendarm;Payton T. Stone;Blaise R. Kimmel;Jessalyn J. Baljon;Mina H. Aziz;Lucinda E. Pastora;Lauren Hubert;Eric W. Roth;Sultan Almunif;Evan A. Scott;John T. Wilson - 通讯作者:
John T. Wilson
Just add water: hydratable, morphologically diverse nanocarrier powders for targeted delivery
- DOI:
10.1039/d1nr02188e - 发表时间:
2021-06 - 期刊:
- 影响因子:6.7
- 作者:
Sharan Bobbala;Michael P. Vincent;Evan A. Scott - 通讯作者:
Evan A. Scott
Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis
- DOI:
10.1039/c8bm01224e - 发表时间:
2018-12 - 期刊:
- 影响因子:6.6
- 作者:
Sean D. Allen;Yu-Gang Liu;Taehyeung Kim;Sharan Bobbala;Sijia Yi;Xiaohan Zhang;Jaehyuk Choi;Evan A. Scott - 通讯作者:
Evan A. Scott
Evan A. Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan A. Scott', 18)}}的其他基金
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
- 批准号:
10457457 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Identification of the immunomodulatory mechanisms of nanocarrier-enhanced costimulation blockade in an allogeneic portal vein islet transplantation model
异体门静脉胰岛移植模型中纳米载体增强共刺激阻断的免疫调节机制的鉴定
- 批准号:
10494100 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Identification of the immunomodulatory mechanisms of nanocarrier-enhanced costimulation blockade in an allogeneic portal vein islet transplantation model
异体门静脉胰岛移植模型中纳米载体增强共刺激阻断的免疫调节机制的鉴定
- 批准号:
10303734 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
- 批准号:
10626132 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Design and characterization of biomimetic nanobiomaterials to elicit CD1-restricted T cell responses during sub-unit vaccination
仿生纳米生物材料的设计和表征,以在亚单位疫苗接种过程中引发 CD1 限制性 T 细胞反应
- 批准号:
10207410 - 财政年份:2019
- 资助金额:
$ 45.14万 - 项目类别:
Design and characterization of biomimetic nanobiomaterials to elicit CD1-restricted T cell responses during sub-unit vaccination
仿生纳米生物材料的设计和表征,以在亚单位疫苗接种过程中引发 CD1 限制性 T 细胞反应
- 批准号:
10444924 - 财政年份:2019
- 资助金额:
$ 45.14万 - 项目类别:
相似国自然基金
酵母菌@金属有机框架复合微颗粒佐剂增强树突状细胞递呈抗原能力的分子机制
- 批准号:32302891
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
皮内接种抗原佐剂复合疫苗跨器官诱导呼吸道黏膜免疫反应
- 批准号:82341042
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
框架核酸新型佐剂构建及在增强抗原表位免疫原性中的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于新型双膦酸盐佐剂和表位嵌合颗粒抗原的乙肝治疗性疫苗疗效与机制研究
- 批准号:32170943
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
自制口服Ag85A DNA疫苗为佐剂布病S2疫苗肠黏膜细胞内加强抗原提呈机制研究
- 批准号:82160312
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Unmasking the Immunomodulatory Roles of CD7 Signaling
揭示 CD7 信号传导的免疫调节作用
- 批准号:
10637876 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别:
Adjuvant effect of physical exercise on immune response to COVID-19 vaccination and interactions with stress
体育锻炼对 COVID-19 疫苗接种免疫反应的辅助作用以及与压力的相互作用
- 批准号:
10593597 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别:
Developing RNA Vaccines to Treat Peanut Hypersensitivity
开发治疗花生过敏的 RNA 疫苗
- 批准号:
10570339 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别:
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别:
Novel humanized mouse model of mucosal immunity
新型人源化小鼠粘膜免疫模型
- 批准号:
10591854 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别: