Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
基本信息
- 批准号:10297764
- 负责人:
- 金额:$ 135.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAllelesArchitectureBindingBiologicalBiological AssayCRISPR interferenceCandidate Disease GeneCell Differentiation processCell LineCell NucleusCellsCellular MorphologyChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsComputer ModelsConsensusCytosineDNA MethylationDataData SetDisease modelDrug ScreeningDue ProcessEnhancersEventFibroblastsGene ExpressionGene Expression RegulationGenesGeneticGenetic EngineeringGenetic TranscriptionGenetic VariationGenomeGenomicsGoalsHeterogeneityHumanHuman GeneticsHuman GenomeIn SituIndividualJointsKnowledgeMaintenanceMapsMeasurementMediatingMethodsMethylationModelingMolecularMolecular ConformationMouse StrainsMultiomic DataNaturePatientsPhenotypePopulationPopulation GeneticsProcessQuantitative Trait LociRNARNA methylationRegenerative MedicineRegulationRegulator GenesRegulatory ElementResolutionResourcesRoleSeriesSiteSomatic CellSpecificityStatistical MethodsSystemTestingTherapeuticTimeUntranslated RNAVariantWorkbasec-myc Genescausal variantcell typeembryonic stem cellepigenomeepigenomicsexperimental studygene interactiongenetic variantgenome sequencinggenomic datahistone modificationinduced pluripotent stem cellinnovationinsightmolecular phenotypemultiple omicsnovelpluripotencypredictive modelingprogramsrepairedsingle-cell RNA sequencingstem cellstranscription factortranscriptional reprogrammingtranscriptometranscriptomicswhole genome
项目摘要
PROJECT SUMMARY
The reprogramming of somatic human cells to induced pluripotent stem cells (iPSCs) by only four transcription
factors (TFs) Oct4, Sox2, Klf4, and cMyc (OSKM) is one of the most striking remodelings of gene regulatory
networks. The remarkable ability of OSKM to reprogram diverse somatic cell types into iPSCs that are
functionally indistinguishable from embryonic stem cells indicates that OSKM leverages a fundamental
mechanism for network remodeling that may be generally applicable to all cell fate transitions. Previous studies
of reprogramming have identified the crucial role of cooperative TF binding in repressing somatic programs and
activating pluripotent ones. However, associating TF binding dynamics and epigenomic remodeling with key
bifurcation events during reprogramming is confounded by the highly heterogeneous nature of the
reprogramming process and the lack of knowledge regarding how the transition from somatic to pluripotent
regulatory programs occurs in individual cells. In this project, we aim to model the regulatory network underlying
the cell fate change of reprogramming using three types of single-cell multi-omic profiles generated from critical
time points during reprogramming. We will interrogate the network leveraging natural perturbation of
reprogramming and pluripotency by genetic variants. Genetic variation is well known to modulate the regulatory
network of pluripotency and contributes to the variability of cellular phenotypes and differentiation capacity of
iPSC lines. We will generate population-scale single-cell joint profiling of RNA and DNA methylation (snmCT-
seq), joint profiling of RNA and chromatin accessibility (scRNA + ATAC-seq) and single-nucleus joint profiling of
chromatin conformation and DNA methylation (sn-m3C-seq), allowing the cell-type-specific determination of
transcriptome, chromatin accessibility and methylation states at regulatory elements, as well as enhancer-gene
looping to connect non-coding variants to their regulatory target. To integrate OSKM binding with the single-cell
transcriptomic and epigenomic dynamics, we will determine the allele-specific binding of TFs and histone
modifications using a pooled-alleles ChIP-seq strategy. We will use Dynamic Regulatory Events Miner (DREM)
to construct predictive models by integrating transcription factor-gene interaction information with time- and
pseudotime-series genomics data. To determine the genetic regulation of the reprogramming network, we will
apply the novel statistical method FastGxE to distinguish cell-type-specific from the shared genetic component
of gene expression regulation, to enhance the sensitivity for identifying cell-type-specific quantitative trait loci
(QTLs). To test the regulatory network, we will experimentally determine the function of network hub genes and
non-coding variants using high-throughput CRISPR interference and precise variant replacement experiments.
Our proposed project integrates diverse approaches including single-cell multi-omics, computational modeling,
and genetic engineering, and will likely provide new insights into the mechanism by which TFs remodel regulatory
networks of cell type identity and serve as a model for similar analyses in other systems.
项目概要
仅通过四个转录即可将人类体细胞重编程为诱导多能干细胞(iPSC)
Oct4、Sox2、Klf4 和 cMyc (OSKM) 因子 (TF) 是基因调控最引人注目的重塑之一
网络。 OSKM 将多种体细胞类型重编程为 iPSC 的卓越能力
与胚胎干细胞在功能上无法区分,这表明 OSKM 利用了一种基本的
网络重塑机制可能普遍适用于所有细胞命运转变。之前的研究
重编程的研究人员已经确定了协同转录因子结合在抑制体细胞程序中的关键作用
激活多能细胞。然而,将 TF 结合动力学和表观基因组重塑与关键
重编程期间的分岔事件因高度异质性而混淆
重编程过程以及缺乏关于如何从体细胞向多能转变的知识
调节程序发生在单个细胞中。在这个项目中,我们的目标是对底层的监管网络进行建模
使用从关键生成的三种类型的单细胞多组学概况进行重编程的细胞命运变化
重新编程期间的时间点。我们将利用自然扰动来询问网络
通过遗传变异进行重编程和多能性。众所周知,遗传变异可以调节调节
多能性网络并有助于细胞表型的变异性和分化能力
iPSC 线。我们将生成群体规模的 RNA 和 DNA 甲基化联合分析 (snmCT-
seq)、RNA 和染色质可及性的联合分析(scRNA + ATAC-seq)以及单核联合分析
染色质构象和 DNA 甲基化 (sn-m3C-seq),允许细胞类型特异性测定
转录组、染色质可及性和调节元件的甲基化状态以及增强子基因
循环将非编码变体与其监管目标连接起来。将 OSKM 结合与单细胞集成
转录组和表观基因组动力学,我们将确定 TF 和组蛋白的等位基因特异性结合
使用混合等位基因 ChIP-seq 策略进行修改。我们将使用动态监管事件矿工(DREM)
通过将转录因子-基因相互作用信息与时间和时间相结合来构建预测模型
伪时间序列基因组数据。为了确定重编程网络的遗传调控,我们将
应用新颖的统计方法 FastGxE 来区分细胞类型特异性和共享遗传成分
基因表达调控,提高识别细胞类型特异性数量性状位点的敏感性
(QTL)。为了测试调控网络,我们将通过实验确定网络枢纽基因的功能和
使用高通量 CRISPR 干扰和精确的变体替换实验来检测非编码变体。
我们提出的项目整合了多种方法,包括单细胞多组学、计算建模、
和基因工程,并可能为 TF 重塑监管机制提供新的见解
细胞类型识别网络并可作为其他系统中类似分析的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongyuan Luo其他文献
Chongyuan Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongyuan Luo', 18)}}的其他基金
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10523974 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
In situ Single-Cell Multi-Omic and Morphological Profiling in Mammalian Brains
哺乳动物大脑的原位单细胞多组学和形态学分析
- 批准号:
10506297 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10689124 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10473738 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10116997 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10582712 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10407453 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10659175 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Distinct Glycophenotypes with Abnormal Signaling Define a Subpopulation of B cells Responsible for Production of Galactose-Deficient IgA1, the Main Autoantigen in IgA Nephropathy
具有异常信号传导的独特糖表型定义了负责产生半乳糖缺陷型 IgA1(IgA 肾病的主要自身抗原)的 B 细胞亚群
- 批准号:
10563618 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Role of POU4F1 in a Novel Form of Ataxia
POU4F1 在新型共济失调中的作用
- 批准号:
10741382 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Heterogeneous microglia activation mediates stress-induced changes in neural circuitry.
异质小胶质细胞激活介导应激引起的神经回路变化。
- 批准号:
10741172 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别: