Mechanisms and functions of CRISPR-Casautoregulation in bacterial immunity and pathogenesis
CRISPR-Casautoregulation在细菌免疫和发病机制中的机制和功能
基本信息
- 批准号:10402801
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2024-05-14
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemAddressAffectAntibiotic ResistanceAutoimmunityBacteriaBacteriophagesBindingBiochemicalBiologicalBiological AssayBiologyCampylobacter jejuniCellsClustered Regularly Interspaced Short Palindromic RepeatsCuesCytolysisDNADataDevelopmentEnvironmentGene ExpressionGene SilencingGenesGeneticGenetic TranscriptionGenome engineeringGoalsGrowthGuide RNAHomeostasisHorizontal Gene TransferHumanHybridsImmune systemImmunityInfectionKnowledgeLaboratoriesMediatingMemoryMetabolicMicrobial BiofilmsMobile Genetic ElementsMolecularMolecular GeneticsNeisseria meningitidisOperonPathogenesisPathway interactionsPhasePhysiologicalPlasmidsProteinsRNARNA BindingRegulationRepressionResearchRouteStimulusStreptococcus Group BStreptococcus pyogenesSystemTestingUntranslated RNAVariantVirulenceVirulence FactorsWorkbaseenvironmental changeexperimental studyhuman pathogenimprovedin vivoinsightmortalitynew therapeutic targetnovelnucleasepathogenic bacteriapathogenic microbepreventpromoterresistance genescaffoldtool
项目摘要
Project Summary
The goal of my research is to investigate how bacterial CRISPR-Cas immune systems are regulated and how
this regulation contributes to bacterial immunity and virulence. CRISPR-Cas systems protect bacteria from
bacteriophages and other mobile genetic elements and thereby prevent cell lysis but also limit the potential for
horizontal gene transfer, a major route for the dissemination of antibiotic-resistance genes. Despite all that is
known about CRISPR-Cas biology from a mechanistic standpoint, much remains to be understood about how
these systems function in their native bacterial hosts. In particular, we lack an understanding of the ways by
which bacteria regulate CRISPR-Cas expression to maximize immunity while mitigating autoimmunity and the
metabolic burden of constitutive system expression. Furthermore, Cas9 is itself a virulence factor in many
human pathogens, including S. pyogenes, S. agalactiae, F. novicida, N. meningitidis, and C. jejuni although it
is unclear how Cas9 contributes to pathogenesis. For these reasons, it is critical to understand whether and
how CRISPR-Cas expression is regulated to prepare bacteria for an impending phage infection or for growth in
a human host.
To address this gap in knowledge, we performed a screen to identify regulators of CRISPR-Cas
immunity. Interestingly, we discovered that trL, a noncoding RNA within the S. pyogenes CRISPR-Cas locus, is
capable of folding into a natural single-guide RNA that directs Cas9 to transcriptionally silence the Cas operon
promoter (Workman et al., 2020). While a trL deletion enhances Cas gene expression by ~50-fold and
stimulates CRISPR-Cas immunity by 3000-fold, it remains unknown how trL de-repression occurs under
physiological conditions. In this proposal, I will identify the conditions and genetic pathways that mediate trL de-
repression and assess the impact of this regulation on bacterial immunity and virulence. We have obtained
preliminary data demonstrating that CRISPR RNAs (crRNAs) and growth-phase specific cues modulate Cas9
expression; however, the mechanisms and consequences of Cas9 induction remain to be tested. In Aim 1, we
test the hypothesis that crRNAs and trL form an integrated genetic circuit that controls CRISPR-Cas
expression, providing a novel mechanism through which spacers, the molecular “memories” of infection,
differentially affect immunity. In Aim 2, we investigate the physiological cues and genetic networks that cause
Cas9 to accumulate in late stationary phase, and we probe whether this regulation affects immunity and
virulence in S. pyogenes. The proposed studies will help us understand how pathogenic bacteria regulate
CRISPR-Cas expression in order to survive in hostile environments. Finally, our work will inform the
development of regulatable Cas9 tools and new therapeutic targets and strategies for human pathogens.
项目概要
我的研究目标是研究细菌 CRISPR-Cas 免疫系统是如何被调节的以及如何
这种调节有助于细菌免疫和毒力,从而保护细菌免受感染。
噬菌体和其他可移动遗传元件,从而防止细胞裂解,但也限制了
水平基因转移是抗生素抗性基因传播的主要途径。
虽然从机制的角度了解了 CRISPR-Cas 生物学,但关于其如何发挥作用还有很多需要了解的地方。
特别是,我们对这些系统在其天然细菌宿主中的运作方式缺乏了解。
哪些细菌调节 CRISPR-Cas 表达以最大限度地提高免疫力,同时减轻自身免疫和
此外,Cas9 本身就是许多毒力因子。
人类病原体,包括化脓性链球菌、无乳链球菌、新凶杆菌、脑膜炎奈瑟菌和空肠弯曲菌,尽管它
目前还不清楚 Cas9 如何促进发病机制,因此了解是否以及如何参与发病机制至关重要。
如何调节 CRISPR-Cas 表达来为即将到来的噬菌体感染或在细菌中生长做好准备
人类宿主。
为了弥补这一知识空白,我们进行了筛选来鉴定 CRISPR-Cas 的调控因子
隐含地,我们发现化脓性链球菌 CRISPR-Cas 位点内的非编码 RNA trL 是
能够折叠成天然的单向导RNA,指导Cas9在转录上沉默Cas操纵子
启动子(Workman et al., 2020),而 trL 缺失可将 Cas 基因表达增强约 50 倍。
刺激 CRISPR-Cas 免疫力达 3000 倍,但 trL 去抑制如何发生仍不清楚
在本提案中,我将确定介导 trL de- 的条件和遗传途径。
我们已经获得了抑制并评估了这种调节对细菌免疫和毒力的影响。
初步数据表明 CRISPR RNA (crRNA) 和生长期特异性信号可调节 Cas9
然而,Cas9 诱导的机制和后果仍有待测试。
检验 crRNA 和 trL 形成控制 CRISPR-Cas 的集成遗传电路的假设
表达,提供了一种新的机制,通过间隔区,感染的分子“记忆”,
在目标 2 中,我们研究了导致免疫力的生理线索和遗传网络。
Cas9 在稳定期后期积累,我们探讨这种调节是否会影响免疫和
拟议的研究将帮助我们了解致病菌如何调节。
最后,我们的工作将为在恶劣环境中生存提供信息。
开发可调节的 Cas9 工具以及人类病原体的新治疗靶点和策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachael Workman其他文献
Rachael Workman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachael Workman', 18)}}的其他基金
Mechanisms and functions of CRISPR-Casautoregulation in bacterial immunity and pathogenesis
CRISPR-Casautoregulation在细菌免疫和发病机制中的机制和功能
- 批准号:
10624292 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Role of CD8 T cell-mediated Pathology in Globoid Cell Leukodystrophy
CD8 T 细胞介导的病理学在球状细胞脑白质营养不良中的作用
- 批准号:
10634808 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Undernutrition, microbiota maturation, and adaptive immunity in Bangladeshi children
孟加拉国儿童的营养不良、微生物群成熟和适应性免疫
- 批准号:
10718949 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Investigating protective adaptive immune responses to influenza antigens using human tonsil organoids
使用人扁桃体类器官研究对流感抗原的保护性适应性免疫反应
- 批准号:
10733719 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
MultiOMICS mechanistic identification of predictors of HIV DNA decay, restoration of immune homeostasis and HIV specific immunity in PWH with cancer receiving Immune check point therapy
接受免疫检查点治疗的癌症患者中 HIV DNA 衰变、免疫稳态恢复和 HIV 特异性免疫的预测因子的多组学机制鉴定
- 批准号:
10731665 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: