Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
基本信息
- 批准号:10224861
- 负责人:
- 金额:$ 51.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlgorithmic SoftwareAlgorithmsBackBreastBreast Cancer DetectionBreast MicrocalcificationCallbackClassificationClinicClinicalComplexComputer softwareDataDatabasesDetectionDevelopmentDevicesDigital Breast TomosynthesisDimensionsEnsureFiberImageIndustrializationIndustryIndustry CollaborationInvestigationLesionLiteratureMalignant NeoplasmsMammographic screeningManualsMethodologyModalityPatientsPerformancePlayResearchResearch PersonnelResolutionRoleScanningScreening for cancerSignal TransductionSkinSpiculateSystemTechniquesTextureThickTimeTissuesTranslatingTranslationsVendorVisualWorkX-Ray Computed TomographyX-Ray Tomographybasebreast imagingcalcificationcase-by-case basisclinical applicationclinical practicecontrast imagingdensitydesigndigitalimage reconstructionimaging propertiesimaging scientistimprovedinnovationmalignant breast neoplasmnovelprototypepublic health relevanceradiologistscreeningsimulationsuccesstomographytumor
项目摘要
Project Description
Digital breast tomosynthsis (DBT) has been growing rapidly in its application to mammographic cancer
screening. While evidence exists suggesting that iterative image reconstruction (IIR) algorithms may improve
DBT image quality in terms of visualizing tumor spiculations and microcalcifications in the breast without any
adjustment to the DBT hardware, there remains a large gap between development of advanced IIR and its
translation to the clinic. This project, building upon our previous success on IIR development for DBT, focuses
on filling in this gap through development and integration of novel IIR algorithms into DBT systems with the
parameter selection in an automated fashion, thus realizing the potential of IIR for improving DBT-image
quality. The project has available a database of hundreds of normal/abnormal DBT cases with clinical DBT
systems, and the assistance of our in-house imaging physicists and radiologists. The specific aims of the
research are: 1: Investigate novel advanced IIR algorithms; 2A: Design image quality metrics specific to DBT
volume characterization; 2B: Determine of IIR algorithms parameters from simulation-based IQ metrics; 3:
Quantitatively evaluate the performance of automated advanced IIR on DBT imaging. The benefit of the
resulting automated IIR algorithms from Aims 1-2 will be evaluated quantitatively in Aim 3 by expert observers
against the clinical processing with respect to imaging tasks relevant for DBT. The proposed project has high
clinical and technical significance, because the use of DBT for mammography screening is becoming the
standard in the US and because the research proposed enables the translation of advanced IIR to impact DBT
clinic applications. We will directly develop the automated IIR algorithms on the industrial leading scanner, the
Hologic Selenia Dimensions, employed in our clinic, and thus improvements gained in this project may have an
immediate impact for mammographic screening in terms of increasing sensitivity and reducing call-back rates.
The team assembled for this project includes leading imaging scientists, physicists, and breast-imaging
radiologists, along with industrial consultants.
项目描述
数字乳腺断层合成 (DBT) 在乳腺 X 光检查中的应用迅速增长
筛选。虽然有证据表明迭代图像重建 (IIR) 算法可能会改进
DBT 图像质量体现在可视化乳房中的肿瘤毛刺和微钙化,没有任何
由于DBT硬件的调整,先进IIR的发展与它的发展还有很大差距
翻译到诊所。该项目以我们之前在 DBT 的 IIR 开发方面取得的成功为基础,重点关注
通过开发新颖的 IIR 算法并将其集成到 DBT 系统中来填补这一空白
以自动化方式选择参数,从而实现 IIR 改善 DBT 图像的潜力
质量。该项目拥有数百个正常/异常 DBT 病例的数据库以及临床 DBT
系统,以及我们内部成像物理学家和放射科医生的协助。该计划的具体目标
研究方向: 1:研究新颖的先进IIR算法; 2A:设计特定于 DBT 的图像质量指标
体积表征; 2B:根据基于仿真的 IQ 指标确定 IIR 算法参数; 3:
定量评估自动化高级 IIR 在 DBT 成像上的性能。的好处
目标 1-2 产生的自动化 IIR 算法将由专家观察员在目标 3 中进行定量评估
反对与 DBT 相关的成像任务的临床处理。拟建项目具有较高的
临床和技术意义,因为使用 DBT 进行乳房 X 光检查正在成为
美国的标准,并且因为所提出的研究使高级 IIR 的转化能够影响 DBT
临床应用。我们将直接在工业领先的扫描仪上开发自动化 IIR 算法,
我们的诊所采用了 Hologic Selenia Dimensions,因此在该项目中取得的改进可能会产生以下效果:
在提高灵敏度和降低回访率方面对乳房 X 光筛查产生直接影响。
为该项目组建的团队包括领先的成像科学家、物理学家和乳腺成像专家
放射科医生以及工业顾问。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization-based algorithm for solving the discrete x-ray transform with nonlinear partial volume effect.
基于优化的求解具有非线性部分体积效应的离散 X 射线变换的算法。
- DOI:
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Chen, Buxin;Liu, Xin;Zhang, Zheng;Xia, Dan;Sidky, Emil Y;Pan, Xiaochuan
- 通讯作者:Pan, Xiaochuan
Non-convex primal-dual algorithm for image reconstruction in spectral CT.
能谱 CT 图像重建的非凸原对偶算法。
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chen, Buxin;Zhang, Zheng;Xia, Dan;Sidky, Emil Y;Pan, Xiaochuan
- 通讯作者:Pan, Xiaochuan
Accurate Image Reconstruction in Dual-Energy CT with Limited-Angular-Range Data Using a Two-Step Method.
使用两步法利用有限角度范围数据在双能 CT 中进行精确图像重建。
- DOI:
- 发表时间:2022-12-06
- 期刊:
- 影响因子:0
- 作者:Chen, Buxin;Zhang, Zheng;Xia, Dan;Sidky, Emil Y;Gilat;Pan, Xiaochuan
- 通讯作者:Pan, Xiaochuan
Estimating the Spectrum in Computed Tomography Via Kullbackâ•fiLeibler Divergence Constrained Optimization
通过 KullbackaÌâificLeibler 发散约束优化估计计算机断层扫描中的频谱
- DOI:
- 发表时间:2024-09-14
- 期刊:
- 影响因子:0
- 作者:Wooseok Ha;E. Sidky
- 通讯作者:E. Sidky
Report on the AAPM deep-learning spectral CT Grand Challenge.
AAPM 深度学习光谱 CT 大挑战赛报告。
- DOI:10.1002/mp.16363
- 发表时间:2022-12-13
- 期刊:
- 影响因子:3.8
- 作者:E. Sidky;Xiaochuan Pan
- 通讯作者:Xiaochuan Pan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOCHUAN PAN其他文献
XIAOCHUAN PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOCHUAN PAN', 18)}}的其他基金
Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
- 批准号:
10448987 - 财政年份:2022
- 资助金额:
$ 51.79万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
9978584 - 财政年份:2018
- 资助金额:
$ 51.79万 - 项目类别:
36th Annual International Conference of the IEEE Engineering in Medicine and Biol
第 36 届 IEEE 医学和生物工程国际年会
- 批准号:
8720474 - 财政年份:2014
- 资助金额:
$ 51.79万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
9305887 - 财政年份:2014
- 资助金额:
$ 51.79万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
9085109 - 财政年份:2014
- 资助金额:
$ 51.79万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
8766676 - 财政年份:2014
- 资助金额:
$ 51.79万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
8616609 - 财政年份:2014
- 资助金额:
$ 51.79万 - 项目类别:
International Symposium on Biomedical Imaging: from Nano to Macro 2011 (ISBI2011)
生物医学成像国际研讨会:从纳米到宏观2011 (ISBI2011)
- 批准号:
8133639 - 财政年份:2011
- 资助金额:
$ 51.79万 - 项目类别:
31st Annual International Conference of IEEE Engineeering in Medicine and Biology
第 31 届 IEEE 医学和生物学工程国际会议
- 批准号:
7744371 - 财政年份:2009
- 资助金额:
$ 51.79万 - 项目类别:
Optimized Cone-Beam CT for Image-Guided Radiation Therapy
用于图像引导放射治疗的优化锥束 CT
- 批准号:
7477349 - 财政年份:2007
- 资助金额:
$ 51.79万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 51.79万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 51.79万 - 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
- 批准号:
10421230 - 财政年份:2021
- 资助金额:
$ 51.79万 - 项目类别:
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10357873 - 财政年份:2021
- 资助金额:
$ 51.79万 - 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
- 批准号:
10372655 - 财政年份:2020
- 资助金额:
$ 51.79万 - 项目类别: