Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
基本信息
- 批准号:10397642
- 负责人:
- 金额:$ 47.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAcuteAddressAdverse effectsAnatomyAnimalsAntiepileptic AgentsAntiinflammatory EffectBehavioralBlood - brain barrier anatomyBrainBrain regionCellsChildhoodCholinergic ReceptorsClinicalCognitiveDataDevelopmentDevelopmental Delay DisordersDiseaseEncapsulatedEncephalopathiesEpilepsyExhibitsFebrile ConvulsionsFormulationFunctional disorderGoalsHippocampus (Brain)Intellectual functioning disabilityInterneuronsIon ChannelKnowledgeLeadLifeLiteratureMediatingModelingMutant Strains MiceMutationNeuronsNeuropeptidesOxytocinPatientsPenetrancePharmacological TreatmentPharmacologyPhenotypePredispositionPropertyProteinsPublishingRecurrenceRegulationReportingResistanceRoleSCN8A encephalopathySCN8A geneSeizuresSocial BehaviorSodium ChannelSuggestionSynapsesTechnologyTestingTherapeuticVariantautism spectrum disorderbasebehavioral phenotypingbiomaterial compatibilitycell typechildhood epilepsyclinical applicationclinically relevantdravet syndromedrug candidateexperimental studygain of functiongamma-Aminobutyric Acidimprovedloss of functionloss of function mutationmortalitymouse modelmutantnanoformulationnanoparticlenanoparticle deliverynervous system disorderneural circuitneuronal excitabilityneuropeptide Ynovelpatch clampprotective effectrabies virus glycoprotein Greceptorside effectsocialsocial deficitstranscytosisvoltage
项目摘要
PROJECT SUMMARY
Dysfunction of voltage-gated sodium channels (VGSCs) is responsible for several forms of catastrophic
childhood encephalopathies. Over 1000 loss-of-function mutations in the VGSC SCN1A have been identified
during the last two decades and are the main cause of Dravet syndrome (DS), characterized by recurrent early-
life febrile seizures (FSs), severe afebrile epilepsy, cognitive and behavioral deficits, and a 15-20% mortality
rate. Mutations in the VGSC SCN8A were more recently identified in 2012, and already over 200 gain-of-function
SCN8A mutations have been reported in patients with a range of clinical features including catastrophic
treatment-resistant childhood epilepsy, autism, intellectual disability and developmental delay. Unfortunately,
most anti-epileptic drugs (AEDs) fail to adequately treat the broad range of severe seizures and behavioral
phenotypes in patients with SCN1A- and SCN8A-derived epilepsy. Thus, despite recent progress in
pharmacological treatments for DS, there remains a need to develop more effective, longer lasting treatments
with fewer side effects. Neuropeptides are well known in animal studies to show great promise for controlling
seizures and ameliorating behavioral abnormalities; however, they do not readily cross the blood brain barrier
and are rapidly metabolized when given systemically. Thus, poor brain penetrance is a critical barrier to the
clinical application of these promising therapeutics. To overcome this challenge, we developed and validated an
approach based on the encapsulation of neuropeptides in nanoparticles conjugated to rabies virus glycoprotein
(RVG). Using this approach, we have found that intranasal delivery of nanoparticle-encapsulated oxytocin (NP-
OT) greatly increases brain penetrance and the capacity of OT to confer robust and sustained increases in
resistance to seizures in mouse models of SCN1A and SCN8A dysfunction. We have also extended our strategy
to encapsulate neuropeptide Y (NP-NPY), and similarly observed a robust improvement in its ability to confer
seizure resistance. In the proposed study, we will establish the ability of NP-OT and NP-NPY to ameliorate
spontaneous seizures and behavioral abnormalities in Scn1a and Scn8a mouse mutants (Aim 1). While the role
of OT in social behavior is well-studied, less is known about the mechanisms by which it modulates seizure
susceptibility. Thus, we will also identify the cellular and neural circuit mechanisms that contribute to the ability
of OT to increase seizure resistance in the Scn1a and Scn8a mutants (Aim 2). Our long-term goal is to develop
safe and effective approaches for the brain delivery of neuropeptides for the treatment of epilepsy and other
neurological disorders.
项目概要
电压门控钠通道 (VGSC) 的功能障碍是导致多种形式的灾难性疾病的原因
儿童脑病。 VGSC SCN1A 中已发现超过 1000 个功能丧失突变
是过去二十年中出现的 Dravet 综合征 (DS) 的主要原因,其特征是反复发作的早期-
终生热性惊厥 (FSs)、严重非热性癫痫、认知和行为缺陷以及 15-20% 的死亡率
速度。 VGSC SCN8A 的突变于 2012 年被发现,并且已经有超过 200 种功能获得性突变
据报道,具有一系列临床特征的患者存在 SCN8A 突变,包括灾难性的
难治性儿童癫痫、自闭症、智力障碍和发育迟缓。很遗憾,
大多数抗癫痫药物 (AED) 无法充分治疗广泛的严重癫痫发作和行为问题
SCN1A 和 SCN8A 衍生性癫痫患者的表型。因此,尽管最近在
DS 的药物治疗,仍然需要开发更有效、更持久的治疗方法
副作用更少。众所周知,神经肽在动物研究中显示出控制疾病的巨大前景。
癫痫发作和改善行为异常;然而,它们不容易穿过血脑屏障
全身给药后会迅速代谢。因此,较差的大脑渗透率是实现这一目标的关键障碍。
这些有前途的疗法的临床应用。为了克服这一挑战,我们开发并验证了
基于将神经肽封装在与狂犬病病毒糖蛋白缀合的纳米颗粒中的方法
(RVG)。使用这种方法,我们发现纳米颗粒封装的催产素(NP-
OT)极大地提高了大脑渗透率以及 OT 带来强劲和持续增长的能力
SCN1A 和 SCN8A 功能障碍小鼠模型对癫痫发作的抵抗力。我们还扩展了我们的策略
封装神经肽 Y (NP-NPY),并且类似地观察到其赋予能力的强劲改善
癫痫抵抗。在拟议的研究中,我们将建立 NP-OT 和 NP-NPY 改善症状的能力
Scn1a 和 Scn8a 小鼠突变体的自发性癫痫发作和行为异常(目标 1)。虽然角色
OT 在社会行为中的作用已得到充分研究,但对其调节癫痫发作的机制知之甚少
易感性。因此,我们还将确定有助于能力的细胞和神经回路机制
OT 增加 Scn1a 和 Scn8a 突变体的癫痫抵抗力(目标 2)。我们的长期目标是发展
安全有效的脑部递送神经肽治疗癫痫和其他疾病的方法
神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew P Escayg其他文献
Andrew P Escayg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew P Escayg', 18)}}的其他基金
SCN8A encephalopathy: disease mechanisms and treatment
SCN8A 脑病:疾病机制和治疗
- 批准号:
10586642 - 财政年份:2023
- 资助金额:
$ 47.42万 - 项目类别:
Exploring the role of GADD45A in Alzheimer's disease
探索 GADD45A 在阿尔茨海默病中的作用
- 批准号:
10373344 - 财政年份:2022
- 资助金额:
$ 47.42万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10593062 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10593062 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Exploring the range of seizure and behavioral phenotypes due to SCN8A mutations
探索 SCN8A 突变引起的癫痫发作和行为表型的范围
- 批准号:
9978424 - 财政年份:2020
- 资助金额:
$ 47.42万 - 项目类别:
Exploring reversible AChE inhibitors as a treatment for refractory epilepsies
探索可逆的 AChE 抑制剂治疗难治性癫痫
- 批准号:
9764633 - 财政年份:2019
- 资助金额:
$ 47.42万 - 项目类别:
N-terminal huntingtin and Huntington disease neuropathology
N 末端亨廷顿蛋白和亨廷顿病神经病理学
- 批准号:
10117290 - 财政年份:2017
- 资助金额:
$ 47.42万 - 项目类别:
Towards the development of an effective treatment for SCN1A-derived epilepsy
致力于开发 SCN1A 源性癫痫的有效治疗方法
- 批准号:
9272959 - 财政年份:2016
- 资助金额:
$ 47.42万 - 项目类别:
Towards the development of an effective treatment for SCN1A-derived epilepsy
致力于开发 SCN1A 源性癫痫的有效治疗方法
- 批准号:
9195849 - 财政年份:2016
- 资助金额:
$ 47.42万 - 项目类别:
A novel target for the treatment of temporal lobe epilepsy
治疗颞叶癫痫的新靶点
- 批准号:
9087344 - 财政年份:2015
- 资助金额:
$ 47.42万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10676910 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Molecular mechanisms of excitatory postsynaptic diversity
兴奋性突触后多样性的分子机制
- 批准号:
10308717 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10340461 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10676910 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别:
Molecular mechanisms of excitatory postsynaptic diversity
兴奋性突触后多样性的分子机制
- 批准号:
10542808 - 财政年份:2021
- 资助金额:
$ 47.42万 - 项目类别: