Data-driven QSP software for personalized colon cancer treatment
用于个性化结肠癌治疗的数据驱动 QSP 软件
基本信息
- 批准号:10227447
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffectAlgorithmsAlternative TherapiesAnimalsBiologicalCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCancer EtiologyCell DensityCellsCessation of lifeCharacteristicsChemicalsClinicalClinical ResearchColon CarcinomaColonic NeoplasmsCombined Modality TherapyComplexComputer softwareDataData ScienceData SetDendritic CellsDifferential EquationEpithelial CellsEquationExpression ProfilingFluorouracilGenderGene ExpressionGeneticGoalsImmuneImmune responseIn VitroIndividualInflammatoryInterferonsInterleukin-2Interleukin-4Interleukin-6Killer CellsLawsLeast-Squares AnalysisLeucovorinMathematicsMeasuresMethodsModelingMolecularNecrosisPatientsPatternPharmaceutical PreparationsPharmacologic SubstancePharmacologyPilot ProjectsPrimary NeoplasmProcessProteinsRaceRadialRunningSTAT4 geneSTAT6 geneSamplingSignal TransductionSourceStatistical MethodsSystemT-Cell ActivationT-LymphocyteTechniquesTimeTreatment outcomeUncertaintyUnited StatesVariantWomanbasebiological systemscancer therapycancer typecell typecolon cancer patientscolon cancer treatmentcytokinedensitydrug actiondrug testingeffective therapyeffector T cellefficacy studyexperimental studyin vivoindividual patientindividualized medicineinnovationinterestirinotecanmacrophagemathematical methodsmathematical modelmenmodel buildingmutantnoveloptimal treatmentspatient subsetspersonalized cancer therapypersonalized medicineresearch and developmentresponsesystems of equationstargeted treatmenttooltreatment strategytumortumor growth
项目摘要
Abstract
Colon cancer is the third leading cause of cancer-related deaths in the United States in both men and women.
A major clinical challenge is to obtain an effective treatment strategy for each patient or at least identify a subset
of patients who could benefit from a particular treatment. Since each colon cancer has its own unique features,
it is very important to obtain personalized cancer treatments and find a way to tailor treatment strategies for
each patient based on each individual's characteristics, including race, gender, genetic factors, immune response
variations.
Recently, Quantitative and Systems Pharmacology (QSP) has been commonly used to discover, validate,
and test drugs. QSP models are a system of differential equations that model the dynamic interactions between
drug(s) and a biological system. These mathematical models provide an integrated “systems level” approach to
determining mechanisms of action of drugs and finding new ways to alter complex cellular networks with mono
or combination therapy to obtain effective treatments. Since QSP models are a complex system of nonlinear
equations with many unknown parameters, estimating the values of the model's parameters is extremely difficult.
Existing parameter estimation methods for QSP models often use assembled data from various sources rather
than a single curated dataset. These datasets are usually obtained through various biological experiments, in
vitro and in vivo animal studies, thus rendering QSP models hard to be practicable for personalized treatments.
To the best of our knowledge, no QSP model has been developed for personalized colon cancer treatments.
In this project, we propose a unique approach to develop a data-driven QSP software to suggest effective
treatment for each patient based on gene expression data from the primary tumor samples. Since signatures of
main characteristics of tumors, such as immune response variations, can be found in gene expression profiling
of primary tumors, we use gene expression data as input. We develop an innovative framework to systematically
employ a combination of data science, mathematical, and statistical methods to obtain personalized colon cancer
treatment. We employ novel inverse problem techniques to estimate the values of parameters of the model and
statistical methods to perform sensitivity analysis. We will use these techniques to propose an optimal treatment
strategy for each patient and predict the efficacy of the proposed treatment. The model might also suggest
alternative therapies in case of low efficacy for some patients.
抽象的
结肠癌是美国男性和女性癌症相关死亡的第三大原因。
一个主要的临床挑战是为每个患者获得有效的治疗策略或至少确定一个子集
可以从特定治疗中受益的患者 由于每种结肠癌都有其独特的特征,
获得个性化的癌症治疗并找到量身定制治疗策略的方法非常重要
根据每个患者的个人特征,包括种族、性别、遗传因素、免疫反应
变化。
最近,定量和系统药理学 (QSP) 已普遍用于发现、验证、
QSP 模型是一个微分方程组,用于模拟药物之间的动态相互作用。
这些数学模型提供了一种集成的“系统级”方法。
确定药物的作用机制并寻找改变复杂细胞网络的新方法
或联合治疗以获得有效的治疗,因为 QSP 模型是一个复杂的非线性系统。
由于方程具有许多未知参数,估计模型参数的值极其困难。
现有的 QSP 模型参数估计方法通常使用来自各种来源的组装数据,而不是
这些数据集通常是通过各种生物实验获得的。
体外和体内动物研究,因此使得 QSP 模型难以用于个性化治疗。
据我们所知,尚未开发出用于个性化结肠癌治疗的 QSP 模型。
在这个项目中,我们提出了一种独特的方法来开发数据驱动的 QSP 软件,以提出有效的建议
根据原发肿瘤样本的基因表达数据对每位患者进行治疗。
肿瘤的主要特征,例如免疫反应变化,可以在基因表达谱中找到
对于原发性肿瘤,我们使用基因表达数据作为输入,我们开发了一个创新框架来系统地进行研究。
结合数据科学、数学和统计方法来获得个性化的结肠癌
我们采用新颖的逆问题技术来估计模型的参数值和
我们将使用这些技术来进行敏感性分析的统计方法提出最佳治疗方案。
该模型还可以建议每个患者的策略并预测所提议的治疗的效果。
替代疗法,以防某些患者效率低下。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparsity-based nonlinear reconstruction of optical parameters in two-photon photoacoustic computed tomography.
双光子光声计算机断层扫描中光学参数的基于稀疏性的非线性重建。
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:2.1
- 作者:Gupta, Madhu;Mishra, Rohit Kumar;Roy, Souvik
- 通讯作者:Roy, Souvik
A New Non-Linear Conjugate Gradient Algorithm for Destructive Cure Rate Model and a Simulation Study: Illustration with Negative Binomial Competing Risks.
一种新的破坏性治愈率模型的非线性共轭梯度算法和模拟研究:负二项式竞争风险的说明。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pal, Suvra;Roy, Souvik
- 通讯作者:Roy, Souvik
ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst
ScholarWorks@麻省大学阿默斯特分校 ScholarWorks@麻省大学阿默斯特分校
- DOI:
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Trang Le;Sumeyye Su;Leili Shahriyari
- 通讯作者:Leili Shahriyari
Bio-Mechanical Model of Osteosarcoma Tumor Microenvironment: A Porous Media Approach.
骨肉瘤肿瘤微环境的生物力学模型:多孔介质方法。
- DOI:
- 发表时间:2022-12-13
- 期刊:
- 影响因子:5.2
- 作者:Hu, Yu;Mohammad Mirzaei, Navid;Shahriyari, Leili
- 通讯作者:Shahriyari, Leili
A Fokker-Planck Framework for Parameter Estimation and Sensitivity Analysis in Colon Cancer.
结肠癌参数估计和敏感性分析的福克-普朗克框架。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Roy S;Pal S;Manoj A;Kakarla S;Padilla JV;Alajmi M
- 通讯作者:Alajmi M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUVRA PAL其他文献
SUVRA PAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUVRA PAL', 18)}}的其他基金
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
- 批准号:
10654253 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
- 批准号:
10823687 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别: