Computational Core
计算核心
基本信息
- 批准号:10213205
- 负责人:
- 金额:$ 35.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnalytical ChemistryBiochemicalBiological MarkersBiomedical ResearchCatalogsChemicalsClinicalCommunitiesComputer softwareComputing MethodologiesCouplingDataData AnalysesDevelopmentDiseaseEngineeringEquipment and supply inventoriesFundingGasesGenerationsGeometryGoalsIonsIsomerismIsotopesKnowledgeLaboratoriesLibrariesMachine LearningMeasurementMeasuresMetabolicMethodologyMethodsMissionModelingMolecularMolecular ConformationOutcomePacific NorthwestParentsPatternPerformancePhasePredictive ValueProbabilityProceduresPropertyProteomeResearchResourcesSamplingShapesSpeedStandardizationThermodynamicsTrainingTranslatingUnited States National Institutes of HealthWorkanalytical methodbasechemical propertychemical standardcheminformaticscomputational chemistrycomputerized toolsdietaryexperimental analysisexperimental studygenome sequencingin silicoinnovationinstrumentationmetabolomemetabolomicsmolecular dynamicsnext generationnovelprogramsquantumquantum chemistrysimulationsmall moleculesmall molecule librariesstatisticstooluser-friendly
项目摘要
COMPUTATIONAL CORE SUMMARY
The capability to chemically identify thousands of metabolites and other chemicals in clinical samples will revolutionize
the search for environmental, dietary, and metabolic determinants of disease. Through innovations in computational
chemistry, we propose to overcome a significant, long-standing obstacle in the field of metabolomics: the absence of
methods for accurate and comprehensive identification of small molecules without relying on data from analysis of authentic
chemical standards. A paradigm shift in metabolomics, we will use gas-phase molecular properties, collision cross section,
MS/MS spectra, accurate mass, and isotopic distribution that can be both accurately predicted computationally and
consistently measured experimentally, and which can thus be used for comprehensive identification of the metabolome. The
outcomes of this proposal directly advance the mission and goals of the NIH Common Fund by: (i) accurately calculating
chemical properties using an integrated, scalable high-performance computational chemistry pipeline, (ii) generating in
silico reference data for an initial target of 500,000 molecules comprising both known and novel metabolites, (iii) developing
and validating a multi-property feature matching approach for unambiguous chemical identification in biomedical samples,
and (iv) disseminating the computational tools, algorithms, and resources . This work is significant because it enables
comprehensive and confident chemical measurement of the metabolome. This work is innovative because it utilizes a high-
throughput, high-accuracy, quantum-chemistry-based computational and chemical informatics platform to predict physical-
chemical properties of metabolites.
计算核心总结
以化学方式识别临床样本中数千种代谢物和其他化学物质的能力将带来革命性的变化
寻找疾病的环境、饮食和代谢决定因素。通过计算创新
化学,我们建议克服代谢组学领域一个重大的、长期存在的障碍:缺乏
准确、全面鉴定小分子的方法,无需依赖真实分析数据
化学标准。代谢组学的范式转变,我们将使用气相分子特性、碰撞截面、
MS/MS 谱图、精确质量和同位素分布,可以通过计算和精确预测
通过实验进行一致测量,因此可用于代谢组的综合鉴定。这
该提案的结果通过以下方式直接推进 NIH 共同基金的使命和目标:(i) 准确计算
使用集成的、可扩展的高性能计算化学管道计算化学性质,(ii) 生成
包含已知和新代谢物的 500,000 个分子的初始目标的计算机参考数据,(iii) 开发
并验证多属性特征匹配方法,以实现生物医学样品中明确的化学物质识别,
(iv) 传播计算工具、算法和资源。这项工作意义重大,因为它使
对代谢组进行全面且可靠的化学测量。这项工作具有创新性,因为它利用了高
高通量、高精度、基于量子化学的计算和化学信息学平台,用于预测物理-
代谢物的化学性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Scott Renslow其他文献
Ryan Scott Renslow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
脑觉醒神经机制的电分析化学基础研究
- 批准号:22374010
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
固态电分析化学对土壤有机质含量的快速解析及响应机理
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
蛋白质调控细胞命运的电分析化学基础研究
- 批准号:22104140
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
环境分析化学
- 批准号:
- 批准年份:2021
- 资助金额:万元
- 项目类别:优秀青年科学基金项目
分析化学
- 批准号:
- 批准年份:2020
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
相似海外基金
Multiscale management method to reduce the risk of age-related degradation of energy plant components
多尺度管理方法可降低能源工厂组件与年龄相关的退化风险
- 批准号:
20K04177 - 财政年份:2020
- 资助金额:
$ 35.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Consistent method for optimal design and manufacturing based on the unified geometrical feature evaluation by the partial differential equation
基于偏微分方程统一几何特征评价的一致性优化设计与制造方法
- 批准号:
19H02049 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of super-resolution structure analysis techniques for bio-macromolecules based on a quantum chemical calculation
基于量子化学计算的生物大分子超分辨结构分析技术发展
- 批准号:
15K05397 - 财政年份:2015
- 资助金额:
$ 35.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
- 批准号:
10390224 - 财政年份:2013
- 资助金额:
$ 35.73万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
9066743 - 财政年份:2013
- 资助金额:
$ 35.73万 - 项目类别: