MEMS-Based High-Frequency Ultrasonic Nozzles for Medical Applications
适用于医疗应用的基于 MEMS 的高频超声波喷嘴
基本信息
- 批准号:7406085
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-16 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdverse effectsBiopolymersBloodBlood capillariesBreathingCaliberCharacteristicsDepositionDevelopmentDevicesDoseDrug CompoundingDrug Delivery SystemsFeasibility StudiesFrequenciesHeatingHornsInsulinIsoproterenolLiquid substanceLungMedicalMedicineMethodologyMicroencapsulationsModelingNebulizerParticle SizePatternPeptidesPerformancePharmaceutical PreparationsProceduresProductionProteinsPublic HealthResearchResearch Project GrantsRespiratory SystemScienceSiliconSimulateSolidStandards of Weights and MeasuresStreamSurfaceSystemTechniquesTechnologyUltrasonicsabsorptionbasecapillarycontrolled releasedesigndosagedrug inhalationminiaturizenanosizednovelparticlepoly (lactic-co-glycolic acid)poly(lactic acid)programsresearch studysimulationsizetargeted delivery
项目摘要
DESCRIPTION (provided by applicant): The proposed two-year research project aims to develop silicon-based miniaturized high- frequency (MHz) ultrasonic nozzles capable of producing monodispersed liquid droplets 2.2 - 4.1 um and solid particles 0.4 - 2.2 um in diameter. Such micron-size particles have multiple biomedical applications including pulmonary drug delivery and preparation of drugs for inhalation. The five specific aims are: (1) to establish the optimum design methodology for high-performance nozzles operating at 1.0 up to 2.5 MHz ultrasonic frequency, (2) to establish a viable nozzle fabrication technique, (3) to determine the atomization characteristics of such ultrasonic nozzles, (4) to evaluate the deposition patterns of monodispersed droplets and particles produced, and (5) to study the feasibility of producing biopolymer particles for microencapsulation and the basic surface science involved. The five corresponding research tasks to achieve these aims are: (1) Design and simulation of multiple Fourier horns-based nozzles using a 3-D ANSYS Program, (2) Nozzle fabrication using micro-electromechanical system (MEMS) technology, (3) Atomization experiment and verification of capillary wave mechanism at target ultrasonic frequencies, and other nozzle performance characterizations, (4) Size and deposition characterizations of medicinal sprays (isoproterenol and insulin) using an established airway model, and (5) Spray drying and parametric study of biopolymer (poly- lactic acid and poly-lactic-co-glycolic acid) dispersions for microencapsulation of isoproterenol and insulin relevant to controlled release of drugs. The 0.5 MHz silicon-based 3-Fourier horn nozzles devised in the PI's group are the first to achieve 7.0 um monodispersed droplets with geometric standard deviation (GSD) as small as 1.1 by ultrasonic atomization. The novel design of multiple Fourier horns in resonance facilitates pure capillary wave atomization mechanism and, thus, yields monodispersed droplets. Proposed increase in the resonant frequency to 1.0 and 2.5 MHz should produce monodispersed liquid droplets 4.1 and 2.2 um in diameter, respectively, and the corresponding solid particles as small as 0.4 um. The proposed research will contribute significantly to the scientific advancement and technical development of high-frequency ultrasonic atomization. The miniaturized new devices have great potential to be integrated into nozzle arrays for high- throughput production of monodispersed micro- and nano-size drug particles and into efficient pocket-sized nebulizers. Therefore, they should have important implications for public health. PI: Chen S. Tsai MEMS-Based High-Frequency Ultrasonic Nozzles for Medical Applications PROJECT NARRATIVE The proposed research will contribute significantly to the scientific advancement and technical development of high-frequency ultrasonic atomization. The resulting silicon-based miniaturized megahertz ultrasonic nozzles are capable of producing micron-size monodispersed medicinal liquid droplets and solid particles for targeted delivery of reproducible doses to the respiratory system. Such new devices may ultimately be developed into efficient pocket-sized nebulizers for drug delivery by inhalation and should, therefore, have important implications for public health.
描述(由申请人提供):拟议的为期两年的研究项目旨在开发基于硅的微型高频(MHz)超声喷嘴,能够产生单分散的液滴2.2-4.1 UM和固体颗粒,直径为0.4-2.2 UM。这种微米大小的颗粒具有多种生物医学应用,包括肺部药物输送和吸入药物的制备。五个具体目的是:(1)建立最佳设计方法,用于以1.0的高性能喷嘴高达2.5 MHz超声波频率,(2)建立可行的喷嘴制造技术,(3)确定此类超声喷雾的原子特征,以评估(4)的原始型号,并评估产生的(4)型号的型号(4)。用于微囊化的生物聚合物颗粒和所涉及的基本表面科学。实现这些目标的五项相应研究任务是:(1)使用3-D ANSYS程序设计和模拟基于傅立叶角的喷嘴的设计和模拟,(2)使用微电机力学系统(MEMS)技术进行喷嘴制造,((3)原子化实验和目标超声频率的毛细血管机制的雾化机制和其他机械性能的特征和其他级别的特征(4)(4 (异丙肾上腺素和胰岛素)使用已建立的气道模型,以及(5)生物聚合物(聚乳酸和多乳酸 - 乙醇酸)的喷雾干燥和参数研究,用于对异丙烯醇和与受控药物受控释放相关的异生酚和胰岛素的微囊化。在PI组中设计的0.5 MHz硅的3倍角喷嘴是第一个通过超声雾化实现具有几何标准偏差(GSD)的7.0 UM单分散液滴(GSD)。共振中多个傅立叶角的新型设计有助于纯毛细血管雾化机制,因此产生单分散的液滴。提议的谐振频率增加到1.0和2.5 MHz应分别产生单分散的液滴4.1和2.2 UM,并且相应的固体颗粒小至0.4 um。拟议的研究将为高频超声原子化的科学进步和技术发展做出重大贡献。小型新设备具有将单分散的微型和纳米尺寸药物颗粒以及有效的袖珍雾化器集成到喷嘴阵列中的巨大潜力。因此,它们应该对公共卫生有重要影响。 PI:基于Chen S. Tsai Mems的医学应用高频超声喷嘴项目叙述拟议的研究将对高频超声雾化的科学进步和技术发展产生重大贡献。由此产生的基于硅的微型化梅加尔茨超声喷嘴能够生产微米大小的单分散药物液滴和固体颗粒,以靶向将可再现剂量送给呼吸系统。这种新设备最终可能被发展成为有效的袖珍烟雾剂,以吸入药物,因此应该对公共卫生产生重要影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miniaturized multiple Fourier-horn ultrasonic droplet generators for biomedical applications.
适用于生物医学应用的小型化多傅里叶喇叭超声波液滴发生器。
- DOI:10.1039/c005262k
- 发表时间:2010
- 期刊:
- 影响因子:6.1
- 作者:Tsai,ChenS;Mao,RongW;Lin,ShihK;Wang,Ning;Tsai,ShirleyC
- 通讯作者:Tsai,ShirleyC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen S Tsai其他文献
Chen S Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen S Tsai', 18)}}的其他基金
MEMS-Based High-Frequency Ultrasonic Nozzles for Medical Applications
适用于医疗应用的基于 MEMS 的高频超声波喷嘴
- 批准号:
7253644 - 财政年份:2007
- 资助金额:
$ 19.63万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Intravesical Immunotherapy of Spontaneous Canine Invasive Urothelial Carcinoma
犬自发性浸润性尿路上皮癌的膀胱内免疫治疗
- 批准号:
10669242 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Antibody-hyaluronic acid bioconjugates for localized treatment of chronic non-infectious uveitis
抗体-透明质酸生物缀合物用于局部治疗慢性非感染性葡萄膜炎
- 批准号:
10259316 - 财政年份:2021
- 资助金额:
$ 19.63万 - 项目类别:
Nature-inspired Aqueous Biodegradable Adhesives for Abdominoplasty
用于腹部整形术的受自然启发的水性可生物降解粘合剂
- 批准号:
10080783 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Image-guided Dosimetry for Injectable Brachytherapy based on Elastin-like Polypeptide Nanoparticles
基于类弹性蛋白多肽纳米颗粒的注射近距离放射治疗的图像引导剂量测定
- 批准号:
9530607 - 财政年份:2017
- 资助金额:
$ 19.63万 - 项目类别:
Renal Therapeutic Angiogenesis Using the Novel Biologic ELP-VEGF
使用新型生物 ELP-VEGF 进行肾脏治疗性血管生成
- 批准号:
10547049 - 财政年份:2017
- 资助金额:
$ 19.63万 - 项目类别: