Design of de novo peptides and electrophysiological testing for voltage-gated sodium channel 1.7 inhibition related to chronic pain treatment
与慢性疼痛治疗相关的电压门控钠通道 1.7 抑制的从头肽设计和电生理学测试
基本信息
- 批准号:10389511
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-03 至 2024-12-02
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdultAffinityAmericanBenchmarkingBindingBiological AssayBiological ProductsCardiacCellsChargeClinicalCommunicationComplexComputational ScienceCryoelectron MicroscopyDataDevelopmentDisulfidesDrug DesignElectrophysiology (science)FamilyGeneticHeart ArrestHumanHuman GeneticsHydrophobicityImageIndustry CollaborationIntegral Membrane ProteinInvestigationIon ChannelKnowledgeLeadLearningLibrariesManualsMethodologyMethodsModificationMutagenesisMutateNeurobiologyNeurosciencesNeurotoxinsNociceptionPain managementParalysedPathologyPeptidesPeripheral Nervous SystemPeruvianPharmaceutical PreparationsPositioning AttributeProtein EngineeringProteinsPublishingResearchResolutionSafetyScorpionsSeizuresSideSodiumSodium ChannelSoftware DesignSpidersStructureTestingTherapeuticTimeToxinTrainingTransferable SkillsTranslational ResearchValidationVariantWorkaddiction liabilitycareerchemical stabilitychronic painchronic pain managementclinical efficacycytokinedesigndrug candidatedrug discoveryeffective therapyexperienceexperimental studyfallsimprovedknowledgebasemimeticsnanomolarneuronal excitabilitynon-opioid analgesicnovelpain signalpatch clamppeptidomimeticspre-clinicalprescription opioidpreservationprotein structure predictionrational designscreeningskeletalskillssmall moleculetargeted treatmentthermostabilityvalidation studiesvirtual screeningvoltage
项目摘要
Project Summary/Abstract
Current drug discovery efforts for non-addictive, chronic pain management are targeting human voltage-gated
sodium (hNaV) channels: pore-forming transmembrane proteins that evoke the fast action potential in excitable
neuronal, cardiac, and skeletal cells. Genetic and preclinical target validation studies have identified hNaV1.7,
hNaV1.8, hNaV1.9 channel subtypes as key proteins in pain signaling with emphasis on hNaV1.7 for its
predominant expression in the peripheral nervous system. Attempts at selectively targeting hNaV1.7 with pre-
clinical small-molecule drugs fall short due to non-selective binding to other hNaV channel subtypes and other
ion channel families; non-selective binding can lead to cardiac arrest, paralysis and seizure. Peptide toxins
originating from tarantula, spider, and scorpion have been identified as potent hNaV-inhibiting biologics.
Notably, Protoxin-II, the neurotoxin from the Peruvian green velvet tarantula, has approximately 1 nM half-
maximal inhibitory concentration (IC50) to hNav1.7. However, these peptide toxins also have non-selective
binding to hNav1.7. With recent cryo-EM structural images of Protoxin-II bound to voltage-sensing domain II of
hNaV1.7, it is now possible to design peptides mimicking Protoxin-II that are selective to hNaV1.7. Advances in
de novo protein design methods using Rosetta – a protein structure prediction and design software suite –
enable a new avenue of drug design and virtual screening prior to experimental validation. Thus, the project
aims to create new peptides inspired from Protoxin-II to selectively target hNaV1.7. The methodology designs
new peptide topologies that incorporate the Protoxin-II motif structurally shown to bind to hNaV1.7. The
peptides are further optimized to bind to residues unique to hNaV1.7: residues that are not targeted by natural
peptide toxins. Upon synthesis of candidate peptides, they will be validated to selectively target hNaV1.7 using
whole-cell patch-clamp electrophysiology. The results will improve our mechanistic understanding needed for
selective, yet potent hNaV1.7 inhibition. Further, this research will be the first attempt at using a combination of
Rosetta de novo protein design methods to create unique peptides selective for hNaV1.7. The applicant upon
completion of this project will have a refined expertise of computational protein design methods and receive
training in electrophysiology for the first time. Throughout this project, the sponsor and co-sponsor will
implement a training plan to strengthen the applicant’s knowledge of neuroscience and drug discovery, while
broadening their collaborative network, and sharpening their scientific communication skills. This plan is
tailored such that the applicant is prepared for an academic career designing peptide biologics for the
treatment and investigation of ion channel pathologies.
项目概要/摘要
当前用于非成瘾性慢性疼痛管理的药物发现工作正在针对人类电压门控
钠 (hNaV) 通道:成孔跨膜蛋白,可激发兴奋性快速动作电位
神经元、心脏和骨骼细胞的遗传和临床前靶点验证研究已确定 hNaV1.7、
hNaV1.8、hNaV1.9 通道亚型作为疼痛信号传导的关键蛋白,重点是 hNaV1.7
尝试用 pre- 选择性靶向 hNaV1.7。
由于与其他 hNaV 通道亚型和其他通道的非选择性结合,临床小分子药物存在不足。
离子通道家族;非选择性结合可导致心脏骤停、麻痹和癫痫发作。
源自狼蛛、蜘蛛和蝎子的病毒已被鉴定为有效的 hNaV 抑制生物制剂。
值得注意的是,Protoxin-II,一种来自秘鲁绿丝绒狼蛛的神经毒素,具有大约 1 nM half-
对hNav1.7的最大抑制浓度(IC50) 然而,这些肽毒素也具有非选择性。
与 hNav1.7 结合,Protoxin-II 与电压传感域 II 结合的最新冷冻电镜结构图像。
hNaV1.7,现在可以设计对 hNaV1.7 具有选择性的模拟 Protoxin-II 的肽。
使用 Rosetta(蛋白质结构预测和设计软件套件)的从头蛋白质设计方法 –
因此,该项目在实验验证之前开辟了药物设计和虚拟筛选的新途径。
旨在创造受 Protoxin-II 启发的新肽,以选择性靶向 hNaV1.7。
新的肽拓扑包含原毒素-II 基序,结构显示可与 hNaV1.7 结合。
肽经过进一步优化,可与 hNaV1.7 特有的残基结合:天然不靶向的残基
合成候选肽后,将使用它们来验证其选择性靶向 hNaV1.7。
全细胞膜片钳电生理学的结果将提高我们对机制的理解。
此外,这项研究将是首次尝试联合使用 hNaV1.7。
Rosetta de novo 蛋白质设计方法创建了对 hNaV1.7 具有选择性的独特肽。
完成该项目将拥有计算蛋白质设计方法的精炼专业知识,并获得
在整个项目中,申办者和共同申办者将首次进行电生理学培训。
实施培训计划以加强申请人的神经科学和药物发现知识,同时
该计划旨在扩大他们的协作网络并提高他们的科学沟通技巧。
量身定制,使申请人为学术生涯做好准备,为以下领域设计肽生物学
离子通道病理学的治疗和研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon John Harris其他文献
Brandon John Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon John Harris', 18)}}的其他基金
Design of de novo peptides and electrophysiological testing for voltage-gated sodium channel 1.7 inhibition related to chronic pain treatment
与慢性疼痛治疗相关的电压门控钠通道 1.7 抑制的从头肽设计和电生理学测试
- 批准号:
10660928 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Partial and Controlled Depletion of SR Calcium by RyR Agonists Prevents Calcium-dependent Arrhythmias
RyR 激动剂部分且受控地消耗 SR 钙可预防钙依赖性心律失常
- 批准号:
10577630 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Novel molecular mediators for activity-dependent myelination
活性依赖性髓鞘形成的新型分子介质
- 批准号:
10622530 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Design of de novo peptides and electrophysiological testing for voltage-gated sodium channel 1.7 inhibition related to chronic pain treatment
与慢性疼痛治疗相关的电压门控钠通道 1.7 抑制的从头肽设计和电生理学测试
- 批准号:
10660928 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Novel molecular mediators for activity-dependent myelination
活性依赖性髓鞘形成的新型分子介质
- 批准号:
10521885 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
Physiological Effects of Autonomous CaMKII Activation in Cardiac Myocytes
心肌细胞自主 CaMKII 激活的生理效应
- 批准号:
9790932 - 财政年份:2018
- 资助金额:
$ 3.92万 - 项目类别: