Autophagy and Retinal Ganglion Cell Death in Glaucoma
青光眼中的自噬和视网膜神经节细胞死亡
基本信息
- 批准号:10390035
- 负责人:
- 金额:$ 47.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressApoptosisApoptoticApplications GrantsAutophagocytosisAutophagosomeAxonAxonal TransportBiological ModelsBlindnessCell DeathCessation of lifeChronicComplexConflict (Psychology)ConsensusDataDevelopmentDiseaseEarly identificationEvaluationEventExhibitsExperimental ModelsFunctional disorderGenetic ModelsGlaucomaHomeostasisInjuryLaboratoriesMagnetismMicrospheresModelingMolecularMusNatureNerve DegenerationNeurodegenerative DisordersNeuronal InjuryOcular HypertensionOptic NerveOrganellesPathogenicityPathway interactionsPatternPharmacologyPhysiologic Intraocular PressurePlayProcessProteinsRegulationRetinal Ganglion CellsRoleScotomaSignal PathwayStressTestingTherapeuticTimeTissuesTransgenic MiceTransgenic OrganismsTraumatic injuryVesicleacute stressage relatedaxon injuryaxonal degenerationhuman diseasehypertensiveneuron lossneuroprotectionnew therapeutic targetnoveloverexpressionrelating to nervous systemresponseresponse to injuryretinal ganglion cell degenerationtooltreatment strategy
项目摘要
ABSTRACT
Glaucoma is a group of diseases, second leading cause of permanent blindness worldwide, characterized by
the chronic degeneration of RGC axons and progressive loss of retinal ganglion cells (RGCs), which results in
visual field defects and vision loss. Elevated intraocular pressure (IOP) is the best-well known factor contributing
to the onset and progression of glaucoma. There are not therapeutic treatments to offer neuroprotection in
glaucoma. Current glaucoma therapies are directed at lowering IOP, but cannot rescue RGCs. A better
understanding of the exact molecular mechanisms triggering RGC death and axonal degeneration in glaucoma
is essential for the development of neuroprotective treatments.
Autophagy is a lysosomal degradative process, which plays a central role in cellular homeostasis by eliminating
damage organelles and proteins. In addition to having a key role on maintaining cellular and tissue homeostasis,
autophagy is regarded as a survival pathway, involved in stress-induced adaptation. Dysfunction of the
autophagy pathway has been associated to a growing number of human diseases, in particular age-related
diseases, as well as to several neurodegenerative disorders. Paradoxically, in the neural tissue, autophagy plays
an important role in neuroprotection as well as neuronal injury and death depending on the circumstances.
Although not extensively, autophagy within a context of glaucoma, has been investigated by independent
laboratories using different experimental models. While all of the studies agree that autophagy is activated in
RGC in response to injury or elevated IOP, there is no consensus on whether autophagy promotes survival or
triggers cell death. Latest studies seem to suggest that a protective or pro-death role of autophagy depend on
the initial injury (i.e traumatic insult vs IOP elevation). Moreover, autophagy seems to have a different role in
RGC death and axonal degeneration.
The purpose of this grant application is to investigate the independent contribution of autophagy to apoptotic
RGC death and axonal degeneration in acute injury and chronic hypertensive experimental models of glaucoma.
For this, we will use unique tools generated in our laboratory, including our unique DBA/2J transgenic mouse
glaucoma models with upregulated and deficient basal autophagy. We anticipate that completion of this project
will contribute to a further understanding of the role of autophagy in neurodegeneration in glaucoma. Most
importantly, our studies have the potential of identifying a novel therapeutic target for the treatment of ocular
hypertension and glaucoma.
抽象的
青光眼是一组疾病,是世界范围内导致永久性失明的第二大原因,其特征是
RGC 轴突的慢性退化和视网膜神经节细胞 (RGC) 的逐渐丧失,导致
视野缺陷和视力丧失。眼内压(IOP)升高是众所周知的影响因素
青光眼的发生和进展。没有治疗方法可以提供神经保护
青光眼。目前的青光眼治疗旨在降低眼压,但无法挽救 RGC。更好的
了解触发青光眼 RGC 死亡和轴突变性的确切分子机制
对于神经保护治疗的发展至关重要。
自噬是一种溶酶体降解过程,通过消除自噬在细胞稳态中发挥核心作用
损害细胞器和蛋白质。除了在维持细胞和组织稳态方面发挥关键作用外,
自噬被认为是一种生存途径,参与应激诱导的适应。功能障碍
自噬途径与越来越多的人类疾病有关,特别是与年龄相关的疾病
疾病,以及一些神经退行性疾病。矛盾的是,在神经组织中,自噬发挥着作用
根据具体情况,在神经保护以及神经元损伤和死亡中发挥重要作用。
尽管不广泛,独立机构已经对青光眼背景下的自噬进行了研究
实验室使用不同的实验模型。虽然所有研究都同意自噬在
RGC 对损伤或眼压升高的反应,对于自噬是否促进生存或促进生存尚无共识
触发细胞死亡。最新研究似乎表明,自噬的保护性或促死亡作用取决于
初始损伤(即创伤性损伤与眼压升高)。此外,自噬似乎在以下方面发挥着不同的作用:
RGC 死亡和轴突变性。
本拨款申请的目的是研究自噬对细胞凋亡的独立贡献
青光眼急性损伤和慢性高血压实验模型中的 RGC 死亡和轴突变性。
为此,我们将使用我们实验室生成的独特工具,包括我们独特的 DBA/2J 转基因小鼠
基础自噬上调和缺陷的青光眼模型。我们预计该项目的完成
将有助于进一步了解自噬在青光眼神经变性中的作用。最多
重要的是,我们的研究有可能确定治疗眼病的新治疗靶点
高血压和青光眼。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paloma Liton其他文献
Paloma Liton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paloma Liton', 18)}}的其他基金
Autophagy and Retinal Ganglion Cell Death in Glaucoma
青光眼中的自噬和视网膜神经节细胞死亡
- 批准号:
10706977 - 财政年份:2022
- 资助金额:
$ 47.55万 - 项目类别:
Lysosomal Enzymes in Outflow Pathway Physiology and Pathophysiology
流出途径生理学和病理生理学中的溶酶体酶
- 批准号:
9284304 - 财政年份:2017
- 资助金额:
$ 47.55万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
9756413 - 财政年份:2016
- 资助金额:
$ 47.55万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
9979962 - 财政年份:2016
- 资助金额:
$ 47.55万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
10390022 - 财政年份:2016
- 资助金额:
$ 47.55万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
10570836 - 财政年份:2016
- 资助金额:
$ 47.55万 - 项目类别:
Autophagy and Mechanotransduction in the Trabecular Meshwork
小梁网中的自噬和力转导
- 批准号:
9147858 - 财政年份:2016
- 资助金额:
$ 47.55万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Heat therapy for the treatment of SCI-induced changes in nociceptor and mitochondrial function
热疗法治疗 SCI 引起的伤害感受器和线粒体功能变化
- 批准号:
10641385 - 财政年份:2023
- 资助金额:
$ 47.55万 - 项目类别:
Development of a novel small molecule RPN13 inhibitor and therapeutic for advanced ovarian cancer patients
开发新型小分子 RPN13 抑制剂和治疗晚期卵巢癌患者的药物
- 批准号:
10760824 - 财政年份:2023
- 资助金额:
$ 47.55万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 47.55万 - 项目类别:
Transcriptional Mechanism underlying Neuronal Hyperexcitability in FXS
FXS 神经元过度兴奋的转录机制
- 批准号:
10746620 - 财政年份:2023
- 资助金额:
$ 47.55万 - 项目类别:
ß-hydroxybutyrate inhibition of pathology in Alzheimer's disease
α-羟基丁酸对阿尔茨海默病病理学的抑制作用
- 批准号:
10739679 - 财政年份:2023
- 资助金额:
$ 47.55万 - 项目类别: