Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
基本信息
- 批准号:10210811
- 负责人:
- 金额:$ 45.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAnimalsAreaAutomobile DrivingBehaviorBrainBrain DiseasesComputer ModelsDataData AnalysesData SetDestinationsDevicesDiagnosisEnvironmentFunctional Magnetic Resonance ImagingGoalsHumanImageImpairmentIndividualLaboratoriesLinkLiteratureLocationMagnetic Resonance ImagingMeasurableMeasuresMediatingMethodologyMethodsModelingMonitorMotorNeurodegenerative DisordersPathway AnalysisProcessPublicationsPublishingQuality of lifeResearchResolutionRodentRouteSensorySeriesSignal TransductionSystemTestingVeinsWorkcognitive systemexperimental studyhigh dimensionalityimprovedinnovationinsightnervous system disorderneuroimagingneuromechanismneurophysiologypredictive modelingskillsvirtual environmentvirtual worldway finding
项目摘要
ABSTRACT
Natural navigation is an important skill that engages many sensory, motor and cognitive systems. Because
aging and degenerative brain disease both diminish the capacity to navigate in the real world, a better
understanding of the brain mechanisms mediating navigation will improve diagnosis and monitoring of
neurological and neurodegenerative diseases. Neurophysiological studies in animals have led to fundamental
insights about the neural mechanisms mediating navigation. However, due to methodological limitations
neuroimaging studies of navigation in humans have generally been less compelling than the animal work. We
propose to overcome these limitations by using the NexGen 7T MRI scanner recently installed at UC Berkeley
to measure brain activity during a naturalistic driving task. Driving is an excellent target for fMRI studies
because is a common human navigation task that unfolds across a large and varied landscape, and on a
timescale commensurate with fMRI; it engages many navigational brain systems; and it is impacted by aging
and neurological diseases. Data will be analyzed by means of an innovative and powerful voxelwise modeling
framework developed in PI Gallant's lab over the past 10 years, and validated in many publications.
Computational models reflecting 33 different types of navigational features will be fit to the fMRI data
separately for each voxel and in each individual subject. Model prediction accuracy and generalization will be
cross-validated using separate data sets and subjects reserved for this purpose. The results will be used to test
dozens of specific hypotheses about navigation drawn from the theoretical and experimental literature on both
rodents and humans. These results will also be used to obtain a detailed functional parcellation of navigational
representations in each individual and across the group, and to identify functional networks that represent
specific navigation-related features. By combining naturalistic experiments, large-scale computational
modeling, multiple hypothesis testing, data-driven functional parcellation and functional network analysis, this
research will provide fundamental new information about the human brain mechanisms mediating navigation
and their relationship to prior findings from the animal literature.
抽象的
自然导航是一项重要的技能,涉及许多感觉、运动和认知系统。因为
衰老和退行性脑部疾病都会降低在现实世界中导航的能力,
了解介导导航的大脑机制将改善诊断和监测
神经系统和神经退行性疾病。动物神经生理学研究取得了基础
关于介导导航的神经机制的见解。然而,由于方法学的限制
人类导航的神经影像学研究通常不如动物研究引人注目。我们
建议通过使用加州大学伯克利分校最近安装的 NexGen 7T MRI 扫描仪来克服这些限制
测量自然驾驶任务期间的大脑活动。驾驶是功能磁共振成像研究的绝佳目标
因为这是一项常见的人类导航任务,它在广阔而多样的景观中展开,并且在
与功能磁共振成像相匹配的时间尺度;它涉及许多导航大脑系统;它受到衰老的影响
和神经系统疾病。将通过创新且强大的体素建模来分析数据
该框架是 PI Gallant 实验室在过去 10 年中开发的,并在许多出版物中得到验证。
反映 33 种不同类型导航特征的计算模型将适合 fMRI 数据
分别针对每个体素和每个单独的受试者。模型预测精度和泛化能力将
使用为此目的保留的单独数据集和主题进行交叉验证。结果将用于测试
从理论和实验文献中得出的数十个关于导航的具体假设
啮齿动物和人类。这些结果还将用于获得导航的详细功能分区
每个个体和整个群体的表征,并识别代表的功能网络
特定的导航相关功能。通过结合自然实验、大规模计算
建模、多重假设检验、数据驱动的功能分区和功能网络分析,这
研究将提供有关人脑介导导航机制的基本新信息
以及它们与动物文献先前发现的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACK L GALLANT其他文献
JACK L GALLANT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACK L GALLANT', 18)}}的其他基金
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10392486 - 财政年份:2021
- 资助金额:
$ 45.66万 - 项目类别:
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10643804 - 财政年份:2021
- 资助金额:
$ 45.66万 - 项目类别:
Representation of information across the human visual cortex
人类视觉皮层的信息表示
- 批准号:
9542335 - 财政年份:2010
- 资助金额:
$ 45.66万 - 项目类别:
相似国自然基金
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
阿拉善荒漠啮齿动物集合群落对气候变化的响应研究
- 批准号:31772667
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Imaging brain-wide subarachnoid and perivascular cerebrospinal fluid flow in aging and Alzheimer's disease
对衰老和阿尔茨海默病中的全脑蛛网膜下腔和血管周围脑脊液流动进行成像
- 批准号:
10722140 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
A Pipeline for Research, Education and Mentoring in Reproductive Aging
生殖衰老研究、教育和指导渠道
- 批准号:
10663641 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
Novel mechanisms of microRNA-mediated anabolic effects in age-related osteoarthritis
microRNA介导的年龄相关骨关节炎合成代谢作用的新机制
- 批准号:
10663670 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
A Novel Small Molecule Oral Therapeutic to Prevent and Reverse Skeletal Muscle Atrophy in Aging Adults
一种预防和逆转老年人骨骼肌萎缩的新型小分子口服疗法
- 批准号:
10761425 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
Deploying Intracortical Electrode Arrays to Record and Stimulate in a Tissue Volume
部署皮质内电极阵列以在组织体积中进行记录和刺激
- 批准号:
10636123 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别: